Dual-kernel based 2D linear discriminant analysis for face recognition | Journal of Ambient Intelligence and Humanized Computing
Skip to main content

Dual-kernel based 2D linear discriminant analysis for face recognition

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This paper proposes a new image feature extraction method for face recognition, called dual-kernel based two dimensional linear discriminant analysis (D-K2DLDA), by integrating multiple kernel discriminant analysis with the existing K2DFDA method. The proposed method deals with a face image directly as a matrix, instead of a stacked vector from rows or columns of the image. Moreover, we separately perform an iterative scheme for kernel parameter optimization for each of the two kernels, based on the maximum margin criterion and the damped Newton’s method, followed by a fusion procedure of the two kernels. Experimental results on the ORL and UMIST face databases show the effectiveness of D-K2DLDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. neural comput. Neural Comput 12(10):2385–2404

    Article  Google Scholar 

  • Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recog nition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  • Kong H, Wang L, Teoh EK, Li X, Wang JG, Venkateswarlu R (2005) Generalized 2d principal component analysis for face image representation and recognition. Neural Netw 18:585–594

    Article  Google Scholar 

  • Kong H, Wang L, Teoh EK, Wang JG (2005) A framework of 2D fisher discriminant analysis: application to face recognition with small number of training samples. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, pp 1083–1088

  • Liu XZ, Feng GC (2013) Multiple kernel learning in fisher discriminant analysis for face recognition. Int J Adv Robot Syst 10(142). doi:10.5772/52350

  • Liu XZ, Wang PSP, Feng GC (2013) Kernel based 2D fisher discriminant analysis with parameter optimization for face recognition. Int J Pattern Recogn Artif Intell 27(8). doi:10.1142/S0218001413560107

  • Lu JW, Plataniotis K, Venetsanopoulos AN (2003) Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans Neural Netw 14(1):117–126

    Article  Google Scholar 

  • Mika S, Rätsch G, Weston J, Schölkopf B, Müller KR (1999) Fisher discriminant analysis with kernels. In: Proceedings of IEEE workshop Neural Networks for Signal Processing IX, Madison, pp 41–48

  • Ruiz A, de Teruel PEL (2001) Nonlinear kernelbased statistical pattern analysis. IEEE Trans Neural Netw 12(1):16–32

    Article  Google Scholar 

  • Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  • Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  • Wang Z, Chen S, Sun T (2008) Multik-mhks: a novel multiple kernel learning algorithm. IEEE Trans Pattern Anal Mach Intell 30(2):348–353

    Article  Google Scholar 

  • Xiong H, Swamy MN, Ahmad MO (2005) Two-dimensional FLD for face recognition. Pattern Recogn 38(7):1121–1124

    Article  Google Scholar 

  • Yang J, Yang JY, Frangi AF, Zhang D (2003) Uncorrelated projection discriminant analysis and its application to face image feature extraction. Int J Pattern Recogn Artif Intell 17(8):1325–1347

    Article  Google Scholar 

  • Yang J, Zhang D, Frangi AF, Yang JY (2004) Two dimensional pca: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  • Zhang X, Gao Y (2009) Face recognition across pose: a review. Pattern Recognit 42(11):2876–2896

    Article  Google Scholar 

  • Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Project for College High Level Talents of Guangdong Province (2013-221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XZ., Ye, HW. Dual-kernel based 2D linear discriminant analysis for face recognition. J Ambient Intell Human Comput 6, 557–562 (2015). https://doi.org/10.1007/s12652-014-0230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-014-0230-2

Keywords