Novel Approach Using Echo State Networks for Microscopic Cellular Image Segmentation | Cognitive Computation Skip to main content
Log in

Novel Approach Using Echo State Networks for Microscopic Cellular Image Segmentation

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

This paper concentrates on the use of Echo State Networks (ESNs), an effective form of reservoir computing, to improve microscopic cellular image segmentation. An ESN is a sparsely connected recurrent neural network in which most of the weights are fixed a priori to randomly chosen values. The only trainable weights are those of links connected to the outputs. The process of segmentation is conducted via two approaches: the basic form, which uses one reservoir, and our approach, which corresponds to using multiple reservoirs. Experimental results confirm the benefits of the second approach, which outperforms all state-of-the-art methods considered in this paper for the problem of microscopic image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://lezoray.users.greyc.fr/researchDatabasesBronchialImages.php.

References

  1. Meijering E. Cell segmentation: 50 years down the road. Signal Process Mag IEEE. 2012;29(5):140. doi:10.1109/MSP.2012.2204190.

    Article  Google Scholar 

  2. Khalbuss WE, Pantanowitz L, Parwani AV. Digital imaging in cytopathology. Pathology Res Int. 2011; 264683

  3. Wu P, Yi J, Zhao G, Huang Z, Qiu B, Gao D. Active contour-based cell segmentation during freezing and its application in cryopreservation. Trans IEEE Biomed Eng. 2015;62(1):284.

    Article  Google Scholar 

  4. Zeng Z, Strange H, Han C, Zwiggelaar R. In: Image analysis and recognition—10th international conference, ICIAR 2013, Póvoa do Varzim, Portugal, June 26–28, 2013. Proceedings 2013; p. 605–612

  5. Su CYCM-C, Wang PC. A neural-network-based approach to white blood cell classification. Sci World J. 2014; 796371

  6. Meftah B, Lézoray O, Chaturvedi S, Khurshid A, Benyettou A. Artificial intelligence, evolutionary computing and metaheuristics, studies. In: Yang XS, editor. Computational intelligence, vol. 427. Berlin: Springer; 2013. p. 525–44.

    Google Scholar 

  7. Chourasiya S, Rani G. Automatic red blood cell counting using watershed segmentation. Int J Comput Sci Inf Technol. 2014;5(4):4834.

    Google Scholar 

  8. Takemoto S, Yoshizawa S, Tsujimura Y, Yokota H. In: Computing and networking (CANDAR), 2013 first international symposium on 2013; p. 294–299

  9. Lukoševičius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput Sci Rev. 2009;3(3):1574.

    Google Scholar 

  10. Strauß T, Wustlich W, Labahn R. Design strategies for weight matrices of echo state networks. Neural Comput. 2012;24(12):3246.

    Article  PubMed  Google Scholar 

  11. Koprinkova-Hristova P, Alexiev K. In: Artificial neural networks and machine learning - ICANN 2013. Lecture notes in computer science, vol. 8131. Berlin: Springer; 2013.

  12. Woodward A, Ikegami T. In: 26th international conferences on image and vision computing 2011; p. 543–548

  13. Koprinkova-Hristova P, Angelova D, Borisova D, Jelev G. In: Innovations in intelligent systems and applications (INISTA), 2013 IEEE international symposium on 2013; p. 1–5

  14. Suganthi D, Purushothaman S. FMRI segmentation using echo state neural network. Int J Image Process. 2008;2(1):1.

    Article  Google Scholar 

  15. Kainz P, Mayrhofer-Reinhartshuber M, Burgsteiner H, Asslaber M, Ahammer H. In: 48th annual conference of the German society for biomedical engineering; 2014

  16. Malik Z, Hussain A, Wu J. Novel biologically inspired approaches to extracting online information from temporal data. Cogn Comput. 2014;6(3):595.

    Article  Google Scholar 

  17. Mitul A, Rabin M, Rakeeb M, Khan AAM, Rana G, Mollah A, Rahman M. In: Informatics, electronics vision (ICIEV), 2013 international conference on 2013; p. 1–6

  18. Bishop C. Pattern recognition and machine learning. Information science and statistics (Springer, 2007)

  19. Cai Q., He H., Man H. In: The 2011 international joint conference on neural networks, IJCNN 2011, San Jose, California, USA, 2011; p. 2313–2320

  20. Goudarzi A, Banda P, Lakin M, Teuscher C, Stefanovic D. CoRR abs/1401.2224 (2014)

  21. Yildiz I, Jaeger H, Kiebel S. Re-visiting the echo state property. Neural Netw. 2012;35:1.

    Article  PubMed  Google Scholar 

  22. Lovlid R. A novel method for training an echo state network with feedback-error learning. Adv Artif Intell. 2013;2013(2514027):9:9.

    Google Scholar 

  23. Goudarzi A, Stefanovic D. Towards a calculus of echo state networks. Procedia Comput Sci. 2014;41:176.

    Article  Google Scholar 

  24. Jaeger H. A tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the echo state network approach. Technical Report 159, German National Research Center for Information Technology (2002)

  25. Meurie C, Lezoray O, Charrier C, Elmoataz A. Combination of multiple pixel classifiers for microscopic image segmentation. Int J Robot Autom. 2005;20(2):63.

    Google Scholar 

  26. Fuchs T, Buhmann J. Computational pathology: challenges and promises for tissue analysis. Comput Med Imaging Graph. 2011;35(7–8):515.

    Article  PubMed  Google Scholar 

  27. Dumont M, Marée R, Wehenkel L, Geurts P. In VISAPP 2009—proceedings of the fourth international conference on computer vision theory and applications, Lisboa, Portugal, February 5–8, 2009—vol 2, 2009; p. 196–203

  28. Song Y, Cai W, Feng D. In: Digital image computing techniques and applications (DICTA), 2012 international conference on 2012; p. 1–6

  29. Huang GB. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376.

    Article  Google Scholar 

  30. Lezoray O, Cardot H. Cooperation of color pixel classification schemes and color watershed: a study for microscopic images. IEEE Trans Image Process. 2002;11(7):783.

    Article  PubMed  Google Scholar 

  31. Jaeger H. In: Neural networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE international joint conference on, 2005; vol 3, p. 1460–1462

  32. Alexandre L, Embrechts M. In: Artificial neural networks—ICANN 2009, lecture notes in computer science, vol. 5768. Berlin: Springer; 2009. p. 1015–1024

  33. Yuanbiao W, Ni J, Zhiping X. In: Internet computing for science and engineering (ICICSE), 2009 fourth international conference on 2009; p. 102–108

  34. Venayagamoorthy GK, Shishir B. Effects of spectral radius and settling time in the performance of echo state networks. Neural Networks. 2009;22(7):861.

    Article  PubMed  Google Scholar 

  35. Koryakin D, Butz M. In: Artificial neural networks and machine learning—ICANN 2012, lecture notes in computer science, vol. 7552. Berlin: Springer; 2012. p. 499–506.

  36. Rodan A, Tino P. Minimum complexity echo state network. Neural Netw IEEE Trans. 2011;22(1):131.

    Article  Google Scholar 

  37. Triefenbach F, Jalalvand A, Schrauwen B, Martens JP. In: Advances in neural information processing systems, 2010; vol. 23, p. 9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boudjelal Meftah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meftah, B., Lézoray, O. & Benyettou, A. Novel Approach Using Echo State Networks for Microscopic Cellular Image Segmentation. Cogn Comput 8, 237–245 (2016). https://doi.org/10.1007/s12559-015-9354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-015-9354-8

Keywords

Navigation