Cutting plane versus compact formulations for uncertain (integer) linear programs | Mathematical Programming Computation Skip to main content
Log in

Cutting plane versus compact formulations for uncertain (integer) linear programs

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Robustness is about reducing the feasible set of a given nominal optimization problem by cutting “risky” solutions away. To this end, the most popular approach in the literature is to extend the nominal model with a polynomial number of additional variables and constraints, so as to obtain its robust counterpart. Robustness can also be enforced by adding a possibly exponential family of cutting planes, which typically leads to an exponential formulation where cuts have to be generated at run time. Both approaches have pros and cons, and it is not clear which is the best one when approaching a specific problem. In this paper we computationally compare the two options on some prototype problems with different characteristics. We first address robust optimization à la Bertsimas and Sim for linear programs, and show through computational experiments that a considerable speedup (up to 2 orders of magnitude) can be achieved by exploiting a dynamic cut generation scheme. For integer linear problems, instead, the compact formulation exhibits a typically better performance. We then move to a probabilistic setting and introduce the uncertain set covering problem where each column has a certain probability of disappearing, and each row has to be covered with high probability. A related uncertain graph connectivity problem is also investigated, where edges have a certain probability of failure. For both problems, compact ILP models and cutting plane solution schemes are presented and compared through extensive computational tests. The outcome is that a compact ILP formulation (if available) can be preferable because it allows for a better use of the rich arsenal of preprocessing/cut generation tools available in modern ILP solvers. For the cases where such a compact ILP formulation is not available, as in the uncertain connectivity problem, we propose a restart solution strategy and computationally show its practical effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, ZIB, Technische Universität Berlin (2007)

  2. Balas, E.: A class of location, distribution and scheduling problems: modeling and solution methods. In: Proc. Chinese-US Symposium on System Analysis. Wiley, New York (1983)

  3. Ben-Tal A., Nemirovski A.: Robust solutions to uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal A., Nemirovski A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Progr. 88, 411–424 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal A., Nemirovski A.: Robust optimization—methodology and applications. Math. Progr. 92, 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beraldi P., Ruszczyński A.: The probabilistic set-covering problem. Oper. Res. 50, 956–967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas D., Sim M.: Robust discrete optimization and network flows. Math. Progr. 98, 49–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas D., Sim M.: The price of robustness. Oper. Res. 52, 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caprara A., Fischetti M., Toth P.: Algorithms for the set covering problem. Ann. Oper. Res. 98, 353–371 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caprara A., Fischetti M., Toth P., Vigo D., Guida P.L.: Algorithms for railway crew management. Math. Progr. 79, 125–141 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Ceria S., Nobili P., Sassano A.: A lagrangian-based heuristic for large-scale set covering problems. Math. Progr. 81, 215–228 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Chen X., Sim M., Sun P.: A robust optimization perspective on stochastic programming. Oper. Res. 55, 1058–1071 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crowder H., Padberg M.W.: Solving large-scale symmetric travelling salesman problems to optimality. Manag. Sci. 26, 495–509 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eén, N., Sörensson, N.: An extensible SAT-solver. In International Conference on Theory and Applications of Satisfiability Testing (SAT), LNCS, vol. 6. Springer, Berlin (2003)

  15. Fischetti M., Martello S.: A hybrid algorithm for finding the k-th smallest of n elements in O(n) time. In: Simeone, B., Toth, P., Gallo, G., Maffioli, F., Pallottino, S. (eds) FORTRAN Codes for Network Optimization. Annals of Operational Research, vol. 13, pp. 401–419. JC Baltzer AG, Basel (1988)

    Google Scholar 

  16. Fischetti, M., Monaci, M.: Light robustness. In: Ahuja, R.K., Moehring, R., Zaroliagis, C. (eds.) Robust and Online Large-Scale Optimization, Lecture Notes in Computer Science, vol. 5868, pp. 61–84. Springer, Berlin (2009)

  17. Gamache M., Soumis F., Marquis G., Desrosiers J.: A column generation approach for large-scale aircrew rostering problems. Oper. Res. 47, 247–263 (1999)

    Article  MATH  Google Scholar 

  18. Garey M., Johnson D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  19. Goldberg E., Novikov Y.: Berkmin: a fast and robust sat-solver. Discrete Appl. Math. 155, 1549–1561 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gomes C.: Complete randomized backtrack search. In: Milano, M. (ed) Constraint and Integer Programming: Toward a Unified Methodology, pp. 233–283. Kluwer, Dordrecht (2003)

    Google Scholar 

  21. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98). American Association for Artificial Intelligence (1998)

  22. Gomes C., Walsh T.: Randomness and structure. In: Rossi, F., van Beek, P., Walsh, T. (eds) Handbook of Constraint Programming, Elsevier, Amsterdam (2006)

    Google Scholar 

  23. Grötschel M., Monma C.L.: Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J. Discrete Math. 3, 502–523 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grötschel M., Monma C.L., Stoer M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Oper. Res. 40, 309–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haight R.G., Revelle C., Snyder S.A.: An integer optimization approach to a probabilistic reserve site selection problem. Oper. Res. 48, 697–708 (2000)

    Article  Google Scholar 

  26. IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  27. Karzan F.K., Nemhauser G.L., Savelsbergh M.W.P.: Information-based branching schemes for binary linear mixed integer problems. Math. Progr. Comput. 1, 249–293 (2009)

    Article  MATH  Google Scholar 

  28. Luby M., Sinclair A., Zuckerman D.: Optimal speedup of las vegas algorithms. Inf. Process. Lett. 47, 173–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martello S., Pisinger D., Toth P.: Dynamic programming and strong bounds for the 0-1 knapsack problem. Manag. Sci. 45, 414–424 (1999)

    Article  MATH  Google Scholar 

  30. Martello S., Toth P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)

    MATH  Google Scholar 

  31. Monma C.L., Munson B.S., Pulleyblank W.R.: Minimum-weight two-connected spanning networks. Math. Progr. 46, 153–171 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, pp. 530–535. ACM, New York (2001)

  33. ORLIB. http://people.brunel.ac.uk/~mastjjb/jeb/info.html

  34. SCIP: Solving Constraint Integer Programs. http://scip.zib.de/

  35. Saxena A., Goyal V., Lejeune M.: MIP reformulations of the probabilistic set covering problem. Math. Progr. 121, 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Soyster A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/tsplib95/

  38. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Gottlob, G., Walsh, T. (eds) IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 1173–1178. Morgan Kaufmann, Waltham (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Fischetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischetti, M., Monaci, M. Cutting plane versus compact formulations for uncertain (integer) linear programs. Math. Prog. Comp. 4, 239–273 (2012). https://doi.org/10.1007/s12532-012-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-012-0039-y

Keywords

Mathematics Subject Classification

Navigation