Abstract
The strengthened lift-and-project closure of a mixed integer linear program is the polyhedron obtained by intersecting all strengthened lift-and-project cuts obtained from its initial formulation, or equivalently all mixed integer Gomory cuts read from all tableaux corresponding to feasible and infeasible bases of the LP relaxation. In this paper, we present an algorithm for approximately optimizing over the strengthened lift-and-project closure. The originality of our method is that it relies on a cut generation linear programming problem which is obtained from the original LP relaxation by only modifying the bounds on the variables and constraints. This separation LP can also be seen as dual to the cut generation LP used in disjunctive programming procedures with a particular normalization. We study properties of this separation LP, and discuss how to use it to approximately optimize over the strengthened lift-and-project closure. Finally, we present computational experiments and comparisons with recent related works.
Similar content being viewed by others
References
Andersen K., Cornuéjols G., Li Y.: Reduce-and-split cuts: improving the performance of mixed integer Gomory cuts. Manag. Sci. 50(11), 1720–1732 (2005)
Andersen K., Cornuéjols G., Li Y.: Split closure and intersection cuts. Math. Progr. 102, 457–493 (2005)
Balas E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)
Balas E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discret. Methods 6(3), 466–486 (1985)
Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points. Discret. Appl. Math. 89, 3–44 (1998) (originally MSRR # 348, Carnegie Mellon University, July 1974)
Balas E., Bonami P.: Generating lift-and-project cuts from the LP simplex tableau: open source implementation and testing of new variants. Math. Progr. Comput. 1, 165–199 (2009)
Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Progr. 58, 295–324 (1993)
Balas E., Ceria S., Cornuéjols G.: Mixed 0-1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42, 1229–1246 (1996)
Balas E., Jeroslow R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4(4), 224–234 (1980)
Balas E., Perregaard M.: Lift and project for mixed 0-1 programming: recent progress. Discret. Appl. Math. 123, 129–154 (2002)
Balas E., Perregaard M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming. Math. Progr. 94, 221–245 (2003)
Balas E., Saxena A.: Optimizing over the split closure. Math. Progr. 113, 219–240 (2008)
Balas E., Zemel E.: Facets of the knapsack polytope from minimal covers. SIAM J. Appl. Math. 34, 119–148 (1978)
Bixby, R., Ceria, S., McZeal, C., Savelsbergh, M.: Miplib 3.0. http://www.caam.rice.edu/~bixby/miplib/miplib.html (1998)
Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: The Sharpest cut, chapter mixed-integer programming: a progress report, pp. 309–326. MPS-SIAM Series on Optimization. SIAM (2004)
Bonami, P., Balas, E.: Cgllandp. https://projects.coin-or.org/cgl/wiki/cgllandp. July (2006)
Bonami P., Cornuéjols G., Dash S., Fischetti M., Lodi A.: Projected Chvátal–Gomory cuts for mixed integer linear programs. Math. Progr. Series A 113(2), 241–257 (2008)
Bonami P., Minoux M.: Using rank-1 lift-and-project closures to generate cuts for 0–1 MIPs, a computational investigation. Discret. Optim. 2(4), 288–307 (2005)
Caprara A., Letchford A.N.: On the separation of split cuts and related inequalities. Math. Progr. 94(2–3), 279–294 (2003)
Chvátal V.: Edmonds polytopes and a hierarchy of combinatorial optimization. Discret. Math. 4, 305–337 (1973)
Cook W., Kannan R., Schrijver A.: Chvátal closures for mixed integer programming problems. Math. Progr. 47, 155–174 (1990)
Cornuéjols G., Li Y.: Elementary closures for integer programs. Oper. Res. Lett. 28, 1–8 (2001)
Cornuéjols, G., Nannicini, G. Practical strategies for generating rank-1 split cuts in mixed-integer linear programming. Math. Progr. Comput. pp. 1–38. doi:10.1007/s12532-011-0028-6
Dash S., Goycoolea M.: A heuristic to generate rank-1 gmi cuts. Math. Progr. Comput. 2, 231–257 (2010)
Dash S., Günlük O., Lodi A.: MIR closures of polyhedral sets. Math. Progr. 121(1), 33–60 (2010)
Eisenbrand, F.: On the membership problem for the elementary closure of a polyhedron. Combinatorica 19(2), (1999)
Fischetti M., Lodi A.: Optimizing over the first Chvátal closure. Math. Progr. 110, 3–20 (2007). doi:10.1007/s10107-006-0054-8
Fischetti M., Lodi A., Tramontani A.: On the separation of disjunctive cuts. Math. Progr. 128, 205–230 (2011)
Fischetti, M., Salvagnin, D.: An in-out approach to disjunctive optimization. In: Lodi, A., Milano, M., Toth, P., (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Lecture Notes in Computer Science, vol. 6140, pp. 136–140. Springer, Berlin (2010)
Fischetti M., Salvagnin D.: A relax-and-cut framework for gomory’s mixed-integer cuts. Math. Progr. Comput. 3, 79–102 (2011)
Forrest, J.: CLP. http://www.coin-or.org/ (2004)
Gomory R.: An algorithm for integer solution solutions to linear programming. In: Graves, R.L., Wolfe, P. (eds) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)
Gomory, R.E.: Solving linear programming problems in integers. In: Bellman R., Hall, M. (eds.) Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics, vol. 10, pp. 211–216. Providence (1960)
Kelley J.E.: The cutting plane method for solving convex programs. J. SIAM 8(4), 703–712 (1960)
Lougee-Heimer, R.: The common optimization interface for operations research. IBM J. Res. Dev. 47, 57–66 (2003). http://www.coin-or.org
Martin, A., Achterberg, T., Koch, T.: MIPLIB 2003. http://miplib.zib.de (2003)
Nemhauser G., Wolsey L.: A recursive procedure to generate all cuts for 0-1 mixed integer programs. Math. Progr. 46, 379–390 (1990)
Padberg M., Roy T., Wolsey L.: Valid linear inequalities for fixed charge problems. Oper. Res. 33, 842–861 (1985)
Roy T.V., Wolsey L.: Solving mixed integer programming problems using automatic reformulation. Oper. Res. 35, 45–57 (1987)