Abstract
We propose two primal heuristics for nonconvex mixed-integer nonlinear programs. Both are based on the idea of rounding the solution of a continuous nonlinear program subject to linear constraints. Each rounding step is accomplished through the solution of a mixed-integer linear program. Our heuristics use the same algorithmic scheme, but they differ in the choice of the point to be rounded (which is feasible for nonlinear constraints but possibly fractional) and in the linear constraints. We propose a feasibility heuristic, that aims at finding an initial feasible solution, and an improvement heuristic, whose purpose is to search for an improved solution within the neighborhood of a given point. The neighborhood is defined through local branching cuts or box constraints. Computational results show the effectiveness in practice of these simple ideas, implemented within an open-source solver for nonconvex mixed-integer nonlinear programs.
Similar content being viewed by others
References
Balas E., Jeroslow R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69 (1972)
Belotti, P.: Couenne: a user’s manual. Tech. Rep., Lehigh University (2009). http://www.coin-or.org/Couenne
Belotti P., Lee J., Liberti L., Margot F., Wåchter A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2008)
Biegler L., Grossmann I., Westerberg A.: Systematic Methods of Chemical Process Design. Prentice Hall, Upper Saddle River (NJ) (1997)
Bonami P., Cornuéjols G., Lodi A., Margot F.: A feasibility pump for Mixed Integer Nonlinear Programs. Math. Program. 119(2), 331–352 (2009)
Bonami, P., Gonçalves, J.: Primal heuristics for mixed-integer nonlinear programs. Tech. Rep. RC24639, IBM (2008)
Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for Mixed-Integer Nonlinear Programming. INFORMS J. Comput.15(1) (2003). http://www.gamsworld.org/minlp/minlplib.htm
D’Ambrosio, C.: Application oriented Mixed Integer Nonlinear Programming. Ph.D. thesis, DEIS, Università di Bologna (2009)
D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a Feasibility Pump approach for nonconvex MINLPs. In: Festa, P. (ed.) Proceedings of the 9th Symposium on Experimental Algorithms (SEA 2010), Lecture Notes in Computer Science, vol. 6049. Springer, Berlin (2010)
D’Ambrosio C., Frangioni A., Liberti L., Lodi A.: On interval-subgradient and no-good cuts. Oper. Res. Lett. 38(5), 341–345 (2010)
Danna E., Rothberg E., Le Pape C.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. A 102, 71–90 (2005)
Fischetti M., Glover F., Lodi A.: The feasibility pump. Math. Program. A 104(1), 91–104 (2005)
Fischetti M., Lodi A.: Local branching. Math. Program. 98, 23–37 (2003)
Floudas C.: Global optimization in design and control of chemical process systems. J. Process Control 10, 125–134 (2001)
Glover F.W.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)
Hansen P., Mladenović N.: Variable neighbourhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)
IBM ILOG: IBM ILOG CPLEX 12.1 User’s Manual. IBM ILOG, Gentilly, France (2010)
Kilinç Karzan F., Nemhauser G.L., Savelsbergh M.W.P.: Information-based branching schemes for binary linear mixed-integer programs. Math. Program. Comput. 1, 249–293 (2009)
Liberti, L., Mladenović, N., Nannicini, G.: A good recipe for solving MINLPs. Math. Program. Comput. (2011). doi:10.1007/s12532-011-0031-y
Lindo Systems: LINDO Solver Suite: user manual. http://www.gams.com/solvers/lindoglobal.pdf
McCormick G.: Computability of global solutions to factorable nonconvex programs: Part i—convex underestimating problems. Math. Program. 10, 146–175 (1976)
Nannicini, G., Belotti, P.: Rounding-based heuristics for nonconvex MINLPs. In: Bonami, P., Liberti, L., Miller, A., Sartenaer, A. (eds.) Proceedings of the European Workshop on MINLP. CIRM, Marseille, France (2010)
Nannicini, G., Belotti, P., Liberti, L.: A local branching heuristic for MINLPs. Tech. Rep. 0812.2188 (2008). http://arxiv.org/abs/0812.2188
Nemhauser G., Wolsey L.: Integer and Combinatorial Optimization. Wiley, New York (1988)
Sahinidis N.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)
Shectman J., Sahinidis N.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12, 1–36 (1998)
Smith, E.: On the optimal design of continuous processes. Ph.D. thesis, Imperial College of Science, Technology and Medicine, University of London (1996)
Smith E., Pantelides C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999)
Tawarmalani M., Sahinidis N.: Global optimization of mixed integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)
Wächter A., Biegler L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Wolsey L.: Integer Programming. Wiley, New York (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nannicini, G., Belotti, P. Rounding-based heuristics for nonconvex MINLPs. Math. Prog. Comp. 4, 1–31 (2012). https://doi.org/10.1007/s12532-011-0032-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-011-0032-x