Optimizing a polyhedral-semidefinite relaxation of completely positive programs | Mathematical Programming Computation Skip to main content
Log in

Optimizing a polyhedral-semidefinite relaxation of completely positive programs

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

It has recently been shown (Burer, Math Program 120:479–495, 2009) that a large class of NP-hard nonconvex quadratic programs (NQPs) can be modeled as so-called completely positive programs, i.e., the minimization of a linear function over the convex cone of completely positive matrices subject to linear constraints. Such convex programs are NP-hard in general. A basic tractable relaxation is gotten by approximating the completely positive matrices with doubly nonnegative matrices, i.e., matrices which are both nonnegative and positive semidefinite, resulting in a doubly nonnegative program (DNP). Optimizing a DNP, while polynomial, is expensive in practice for interior-point methods. In this paper, we propose a practically efficient decomposition technique, which approximately solves the DNPs while simultaneously producing lower bounds on the original NQP. We illustrate the effectiveness of our approach for solving the basic relaxation of box-constrained NQPs (BoxQPs) and the quadratic assignment problem. For one quadratic assignment instance, a best-known lower bound is obtained. We also incorporate the lower bounds within a branch-and-bound scheme for solving BoxQPs and the quadratic multiple knapsack problem. In particular, to the best of our knowledge, the resulting algorithm for globally solving BoxQPs is the most efficient to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Google Scholar 

  2. Anstreicher K.M.: Recent advances in the solution of quadratic assignment problems. Math. Program. (Ser. B) 97(1–2), 27–42 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Berman A., Rothblum U.G.: A note on the computation of the CP-rank. Linear Algebra Appl. 419, 1–7 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bomze I.M., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002) Dedicated to Professor Naum Z. Shor on his 65th birthday

    Article  MATH  Google Scholar 

  5. Bomze I.M., Dür M., de Klerk E., Roos C., Quist A.J., Terlaky T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18(4), 301–320 (2000) GO’99 Firenze

    Article  MATH  Google Scholar 

  6. Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burer S., Vandenbussche D.: Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16(3), 493–512 (2006)

    Article  MathSciNet  Google Scholar 

  8. Burer S., Vandenbussche D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43(2), 181–195 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burkard R.E., Karisch S., Rendl F.: QAPLIB—a quadratic assignment problem library. Eur. J. Oper. Res. 55, 115–119 (1991)

    Article  MATH  Google Scholar 

  10. Caprara A., Pisinger D., Toth P.: Exact solution of the quadratic knapsack problem. Inf. J. Comput. 11(2), 125–137 (1999) Combinatorial optimization and network flows

    Article  MATH  MathSciNet  Google Scholar 

  11. de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Klerk E., Sotirov R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. 122(2 Ser. A), 225–246 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Helmberg C., Rendl F., Weismantel R.: A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim. 4(2), 197–215 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. ILOG, Inc.: ILOG CPLEX 9.0, User Manual (2003)

  15. Jansson C., Chaykin D., Keil C.: Rigorous error bounds for the optimal value in semidefinite programming. SIAM J. Numer. Anal. 46(1), 180–200 (2007)

    Article  MathSciNet  Google Scholar 

  16. Moreau J.-J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris 255, 238–240 (1962)

    MATH  MathSciNet  Google Scholar 

  17. Murty K.G., Kabadi S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Parrilo, P.: Structured semidefinite programs and semi-algebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology (2000)

  19. Pisinger D.: The quadratic knapsack problem—a survey. Discret. Appl. Math. 155(5), 623–648 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pisinger D., Rasmussen A., Sandvik R.: Solution of large-sized quadratic knapsack problems through aggressive reduction. Inf. J. Comput. 19(2), 280–290 (2007)

    Article  MathSciNet  Google Scholar 

  21. Povh J., Rendl F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6(3), 231–241 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Povh J., Rendl F., Wiegele A.: A boundary point method to solve semidefinite programs. Computing 78(3), 277–286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. QAPLIB. http://www.seas.upenn.edu/qaplib/

  24. Sahinidis N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sarac, T., Sipahioglu, A.: A genetic algorithm for the quadratic multiple knapsack problem. In: Advances in Brain, Vision, and Artificial Intelligence, vol. 4729 of Lecture Notes in Computer Science, pp. 490–498. Springer, Heidelberg (2007)

  26. Sturm J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  27. Vandenbussche D., Nemhauser G.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102(3), 559–575 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wen Z., Goldfarb D., Yin W.: Alternating Direction Augmented Lagrangian Methods for Semidefinite Programming. Manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York (2009)

    Google Scholar 

  29. Zhao Q., Karisch S., Rendl F., Wolkowicz H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2, 71–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhao, X., Sun, D., Toh, K.: A Newton-CG augmented Lagrangian method for semidefinite programming. Preprint, National University of Singapore, Singapore, Mar (2008). To appear in SIAM Journal on Optimization

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Burer.

Additional information

This research was partially supported by NSF Grant CCF-0545514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burer, S. Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math. Prog. Comp. 2, 1–19 (2010). https://doi.org/10.1007/s12532-010-0010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-010-0010-8

Keywords

Mathematics Subject Classification (2000)

Navigation