Intuitionistic neuro-fuzzy network with evolutionary adaptation | Evolving Systems Skip to main content

Advertisement

Log in

Intuitionistic neuro-fuzzy network with evolutionary adaptation

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Intuitionistic fuzzy inference systems (IFISs) incorporate imprecision in the construction of membership functions present in fuzzy inference systems. In this paper we design intuitionistic neuro-fuzzy networks to adapt the antecedent and consequent parameters of IFISs. We also propose a mean of maximum defuzzification method for a class of Takagi–Sugeno IFISs and this method is compared with the basic defuzzification distribution operator. On both real-life credit scoring data and seven benchmark regression datasets we show that the intuitionistic neuro-fuzzy network trained with particle swarm optimization outperforms traditional ANFIS methods (hybrid and backpropagation) and ANFIS trained with evolutionary algorithms (genetic algorithm and particle swarm optimization), respectively. A set of nonparametric tests for multiple datasets is performed to demonstrate statistical differences between the algorithms. In the task of adapting the intuitionistic neuro-fuzzy network, we show that particle swarm optimization provides a higher prediction accuracy compared with traditional algorithms based on gradient descent or least-squares estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akram MS, Habib S, Javed I (2014) Intuitionistic fuzzy logic control for washing machines. Indian J Sci Technol 7(5):654–661

    Google Scholar 

  • Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Multiple-Valued Logic Soft Comput 17(2–3):255–287

    Google Scholar 

  • Angelov P (1995) Crispification: defuzzification over intuitionistic fuzzy sets. BUSEFAL 64:51–55

    Google Scholar 

  • Angelov P (2001) Multi-objective optimisation in air-conditioning systems: comfort/discomfort definition by IF sets. Notes Intuit Fuzzy Sets 7(1):10–23

    MathSciNet  MATH  Google Scholar 

  • Angelov P (2012) Evolving fuzzy systems. Computational complexity: theory, techniques, and applications. Springer-Verlag, Berlin, pp 1053–1065

    Chapter  Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20:87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov KT (1999) Intuitionistic fuzzy sets. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Barrenechea E (2009) Generalized Atanassov’s intuitionistic fuzzy index. Construction method. IFSA-EUSFLAT, Lisbon, pp 478–482

    Google Scholar 

  • Bernardo D, Hagras H, Tsang E (2013) A genetic type-2 fuzzy logic based system for the generation of summarised linguistic predictive models for financial applications. Soft Comput 17(12):2185–2201

    Article  Google Scholar 

  • Castillo O, Melin P (2012) Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf Sci 205:1–19

    Article  Google Scholar 

  • Castillo O, Alanis A, Garcia M, Arias H (2007) An intuitionistic fuzzy system for time series analysis in plant monitoring and diagnosis. Appl Soft Comput 7(4):1227–1233

    Article  Google Scholar 

  • Castillo O, Martínez-Marroquín R, Melin P, Valdez F, Soria J (2012) Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf Sci 192:19–38

    Article  Google Scholar 

  • Chakravarty S, Dash PK (2012) A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Appl Soft Comput 12(2):931–941

    Article  Google Scholar 

  • Chen LH, Tu CC (2015) Time-validating-based Atanassov’s intuitionistic fuzzy decision-making. IEEE Trans Fuzzy Syst 23(4):743–756

    Article  MathSciNet  Google Scholar 

  • Chen S, Montgomer J, Bolufé-Röhler A (2015) Measuring the curse of dimensionality and its effects on particle swarm optimization and differential evolution. Appl Intell 42(3):514–526

    Article  Google Scholar 

  • Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2:267–278

    Article  Google Scholar 

  • Demertzis K, Iliadis L, Avramidis S, El-Kassaby YA (2016) Machine learning use in predicting interior spruce wood density utilizing progeny test information. Neural Comput Appl. doi:10.1007/s00521-015-2075-9

    Google Scholar 

  • Deschrijver G, Cornelis C, Kerre E (2004) On the representation of intuitionistic fuzzy t-norm and t-conorm. IEEE T Fuzzy Syst 12:45–61

    Article  Google Scholar 

  • Dubois D, Prade H (2005) Interval-valued fuzzy set, possibility theory and imprecise probability. European Society for Fuzzy Logic and Technology, EUSFLAT/LFA, Barcelona, pp 314–319

    Google Scholar 

  • García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  • Hagras H, Wagner Ch (2012) Towards the widespread use of type-2 fuzzy logic systems in real world applications. IEEE Comput Intell Mag 7(3):4–24

    Article  Google Scholar 

  • Hájek P (2012) Credit rating analysis using adaptive fuzzy rule-based systems: an industry specific approach. Cent Eur J Oper Res 20(3):421–434

    Article  MATH  Google Scholar 

  • Hájek P, Olej V (2012) Adaptive intuitionistic fuzzy inference systems of Takagi-Sugeno type for regression problems. In: Iliadis LS, Maglogianis I, Papadopoulos H (eds) Artificial intelligence applications and innovations. IFIP advances in information and communication technology, vol 381. Springer, Heidelberg, pp 206–216

  • Hájek P, Olej V (2013) Evaluating sentiment in annual reports for financial distress prediction using neural networks and support vector machines. In: Iliadis L, Papadopoulos H, Jayne C (eds) Engineering applications of neural networks. Communications in computer and information science, vol 384. Springer, Heidelberg, pp 1–10

  • Hájek P, Olej V (2014) Defuzzification methods in intuitionistic fuzzy inference systems of Takagi-Sugeno type. The case of corporate bankruptcy prediction. Fuzzy Systems and Knowledge Discovery (FSKD’14), Xiamen, China, pp 240–244

  • Hall MA (1999) Correlation-based feature selection for machine learning. Dissertation, The University of Waikato

  • Henzgen S, Strickert M, Hüllermeier E (2014) Visualization of evolving fuzzy rule-based systems. Evol Syst 5(3):175–191

    Article  Google Scholar 

  • Huarng K, Yu HK (2005) A type-2 fuzzy time series model for stock index forecasting. Stat Mech Appl 353:445–462

    Article  Google Scholar 

  • Jang JSR (1991) Fuzzy modeling using generalized neural networks Kalman filter algorithm. In: Artificial intelligence (AAAI-91), Anaheim, California, pp 762–767

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Kaczmarz S (1993) Approximate solution of systems of linear equations. Int J Control 53:1269–1271

    Article  MathSciNet  MATH  Google Scholar 

  • Kasabov N (2015) Evolving connectionist systems: from neuro-fuzzy-, to spiking- and neuro-genetic. Springer handbook of computational intelligence. Springer-Verlag, Heidelberg, pp 771–782

    Chapter  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  • Klement EP, Mesiar R, Pap E (2004) Triangular norms. Position paper I: basic analytical and algebraic properties. Fuzzy Set Syst 143:5–26

    Article  MathSciNet  MATH  Google Scholar 

  • Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  • Loganathan C, Girija KV (2013) Hybrid learning for adaptive neuro fuzzy inference system. Int J Eng Sci 2(11):6–13

    Google Scholar 

  • Loughran T, McDonald B (2011) When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. J Financ 66(1):35–65

    Article  Google Scholar 

  • Maciel L, Lemos A, Gomide F, Ballini R (2012) Evolving fuzzy systems for pricing fixed income options. Evol Syst 3(1):5–18

    Article  Google Scholar 

  • Mendel JM (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  • Olej V, Hájek P (2010) IF-inference systems design for prediction of ozone time series: the case of Pardubice micro-region. In: Diamantaras K, Duch W, Iliadis LS (eds) Artificial neural networks – ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Heidelberg, pp 1–11

  • Olej V, Hájek P (2011) Comparison of fuzzy operators for IF-inference systems of Takagi-Sugeno type in ozone prediction. In: Iliadis LS, Maglogianis I, Papadopoulos H (eds) Artificial intelligence applications and innovations. IFIP advances in information and communication technology, vol 364. Springer, Heidelberg, pp 92–97

  • Ramaswamy P, Riese M, Edwards RM, Lee KY (1993) Two approaches for automating the tuning process of fuzzy logic controllers. In: IEEE Conference on Decision and Control, San Antonio, TX, pp 1753–1758

  • Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, pp 69–73

  • Simon D (2002) Training fuzzy systems with the extended Kalman filter. Fuzzy Set Syst 132(2):189–199

    Article  MathSciNet  MATH  Google Scholar 

  • Strohmer T, Vershynin R (2007) A randomized Kaczmarz algorithm with exponential convergence. J Fourier Anal Appl 15(2):262–278

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Wang D (2008) Particle swarm optimization with a leader and followers. Progress Nat Sci 18(11):1437–1443

    Article  Google Scholar 

  • Wang L, Ye J (1998) Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Set Syst 101:353–362

    Article  MathSciNet  Google Scholar 

  • Zarandi F, Rezaee B, Turksen IB, Neshat E (2009) A type-2 fuzzy rules-based expert system model for stock price analysis. Expert Syst Appl 36:139–154

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the scientific research project of the Czech Sciences Foundation Grant No: 13-10331S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hájek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hájek, P., Olej, V. Intuitionistic neuro-fuzzy network with evolutionary adaptation. Evolving Systems 8, 35–47 (2017). https://doi.org/10.1007/s12530-016-9157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-016-9157-5

Keywords

Navigation