A GIS-remote sensing approach for forest fire risk assessment: case of Bizerte region, Tunisia | Applied Geomatics
Skip to main content

Advertisement

A GIS-remote sensing approach for forest fire risk assessment: case of Bizerte region, Tunisia

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

In this era of climate change and global warming, forest fires are increasing around the world and especially in areas with arid and semi-arid climate. Hence, prevention is vital and it is considered as the best solution to protect forest areas. This paper presents a multi-criteria approach for the assessment and mapping of fire risk using three indicators: topomorphology index, climatic index, and human one. For each indicator, sub-indicators such as slope, morphology, exposure, number of fires, groundwater reserve, and evapotranspiration are chosen to generate a forest fire risk index in Bizerte region. Spatial data on all these indicators have been aggregated and organized in a geographic information system (GIS) framework. Results show that 33% of the total area of Bizerte forest is highly vulnerable to fire risk and an increasing of risk from 2013 to 2016. Sensitivity analyses indicated that the removal of the climatic (ICL) and the human indexes (HI) from the forest fire risk index causes large variation in the risk assessment. As a consequence, it should have higher weights than other indicators, which proves that triggering of wildfires is in the whole part caused by human activities and accelerated by climatic conditions. The remote sensing approach using NBR index confirms that severity of burned area increases throughout the time and the most changes are observed in the Northeast of Bizerte forest. These results can serve as a planning tool for decision makers to save the lives of residents and forest resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alabokidis K, Athanasis N, Gagliardi F, Karayiannis F, Palaiologou P, Parastatidis S, Vasilakos C (2013) Virtual fire: a web-based GIS platform for forest fire control. Eco Inform 16:62–69

    Article  Google Scholar 

  • Al-Adamat RAN, Foster IDL, Baban SNJ (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23:303–324

    Article  Google Scholar 

  • Arlery R, Garnier M, Langlois R (1954) Application des méthodes de Thornthwaite à l’esquisse d’une description agronomique du climat de la France, La météorologie - p. 245–367

  • Carrega P (1994) Analyse spatiale quantitative et appliquée, topo-climatologie et habitat. Revue de Géographie du laboratoire d’analyse spatiale Raoul Blanchard, UFR Espaces et Cultures, Université de Nice Sophia Antipolis. 373 p

  • Carrega P (2008) Le risque d’incendies de forêt en région méditerranéenne: compréhension et évolution. Montpellier: France

  • Carrega P, Geronimo N (2007) Risque météorologique d’incendie de foret et méthodes de spatialisation pour une cartographie a fine échelle. Actes du XXeme colloque international de l’AIC. Sep 2007, tunis, tunisia. Pp 168–173

  • Catry FX, Almeida RM, Rego FC (2004) Production of visibility maps for continental Portugal and their use in the surveillance of forest fires. Silva Lusitana 12(2), 227–241. http://www.scielo.mec.pt/pdf/slu/v12n2/12n2a07.pdf

  • CEMAGREF (1995) Cartographie du niveau de risque d’incendie, exemple du massif des Maures, Rapport CEMAGREF, Le Tholonet - BP 31 1 3612 Aix-en-Provence Cedex 1

  • Chandoul H (1986) Le problème des feux de forêts en Tunisie, seminaire sur les méthodes et matériels à utiliser pour prévenir les incendies de forêt, Valence, 15 p

  • Chriha S, Sghari A (2013) Forest fires in Tunisia, irreversible sequelae of the revolution of 2011. J Mediterr Geogr 87–93

  • Chuvieco E, Cocero D, Riaño D, Martin P, Martınez-Vega J, de la Riva J, Pérez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92:322–331. https://doi.org/10.1016/j.rse.2004.01.019

    Article  Google Scholar 

  • Colin P, Eaves C (2001) Protection des forêts contre les incendies .Ed, FAO, CEMAGRAF.p 149

  • CRDA Bizerte (2016) Numerical agricultural map (in French)

  • Dagorne A, Castex JM (1992) Gestion des espaces forestiers et sub-forestiers en zones rouges. L’exemple de Saint Césaire-sur-Siagne (Alpes-Maritimes, France). Finisterra, XXVII, 53–54, 1992, pp: 141–166

  • Dagorne A, Duché Y, Castex JM, Ottavi JY, Dalier C, de Coster A (1994) Protection des forêts contre l’incendie et systeme d’information géographique: application à la commune dl Auribeau-sur-Siagne (Alpes-Maritimes), forêt méditerranéenne xv, n 4, octobre 1994

  • Darques R (2015) Mediterranean cities under fire. A critical approach to the wildland–urban interface. Appl Geogr 59:10–21

    Article  Google Scholar 

  • DGF (1995) (Direction Generale des Forets), 1995. Results of the first national forest inventory in Tunisia, Ministry of Agriculture, Tunis, 88pp (in Frensh)

  • DGF (2016) Forest surveying and monitoring report, unpublished report, p 62

  • Dimitrakopoulos AP (2001) Pyrostat—a computer program for forest fire data inventory and analysis in Mediterranean countries. Environ Model Softw 16(4):351–359

    Article  Google Scholar 

  • Dlamini WM (2016) Characterization of the July 2007 Swaziland fire disaster using satellite remote sensing and GIS. Procedia Environ Sci 33:239–252

    Article  Google Scholar 

  • Erten E, Kurgun V, & Musaoglu N (2004) Forest fire risk zone mapping from satellite imagery and GIS: a case study. Istanbul: Proceedings of 20th Congress of ISPRS

  • Eugenio FC, Louzada FLRO, Santos AR, Moulin JV (2011) Identification of permanent preservation areas in Alegre-ES by using geotechnology. Cerne 17, 563–571. https://doi.org/10.1590/S0104-77602011000400016

  • FAO (2001) Global forest fire assessment 1990–2000. Rome: FRA Working Paper 55

  • Ferrari JL, Santos AR, Garcia RF, Amaral AA, Pereira LR (2015) Conflict analysis of land use and land cover in the permanent preservation areas of Ifes—Alegre campus, Espírito Santo state, Brazil. Floram 22:307–321. https://doi.org/10.1590/2179-8087.042113

    Article  Google Scholar 

  • French NHF, Kasischke ES, Hall RJ, Murphy KA, Verbyla DL, Hoy EE, Allen JL (2008) Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. Int J Wildland Fire 17:443. https://doi.org/10.1071/WF08007

    Article  Google Scholar 

  • General Directorate of Forests (DGF) (2016) Update of the national forest inventory, in published report, 54pp (in Frensh)

  • Guettouche MS, Derias A, Boutiba M, Bounif MA, Guendouz M, Boudella A (2011) A fire risk modelling and spatialization by GIS. J Geogr Inf Syst 3:254–265

  • Indu V, Sabu M, Thampi (2019) A nature-inspired approach based on forest fire model for modeling rumor propagation in social networks. J Netw Comput Appl 125:28–41

    Article  Google Scholar 

  • Institut National de la métérologie (INM) (2016) Données météorologiques (2010–2016), rapports et données inedit

  • Jappiot M (2000) Evaluation et cartographie du risque d’incendie de forêt à l’aide d’un SIG. Exemple d’un massif forestier du sud de la France, forêt méditerranéenne, XXI, n° l, mars 2000

  • Key C, Benson N (2005) Landscape assessment: remote sensing of severity, the normalized burn ratio and ground measure of severity, the composite burn index. FIREMON: fire effects monitoring and inventory system USDA Forest Service, Rocky Mountain Res. Station 164

  • Key CH, Benson NC (2006) Landscape assessment: ground measure of severity; the Composite Burn Index, and remote sensing of severity, the Normalized Burn Index. In: Lutes, D., Keane, R., Caratti, J., Key, C., Benson, N., Sutherland, S., Grangi, L. (Eds.), FIREMON: fire effects monitoring and inventory system. USDA Forest Service, 1–51

  • Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int J GeogrInfSyst 4(4):413–428

    Google Scholar 

  • Luppi ASL, Santos AR, Eugenio FC, Feitosa L S (2015) Utilization of geotechnology for the mapping of permanent preservation areas in João Neiva, Espírito Santo state, Brazil. Floram 13–22. https://doi.org/10.1590/2179-8087.0027

  • Martins LD, Eugenio FC, Rodrigues WN, Brinate SVB, Colodetti TV, Amaral JFT, Jesus Júnior WC, Ramalho JC, Santos AR, Tomaz MA (2015) A bitter cup: the estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regions. Plant Soil Environ 61(12):544–552. https://doi.org/10.17221/602/2015-PSE

    Article  Google Scholar 

  • Meddour-Sahar R, Meddour A, Derridj (2008) Analyse des feux de forêts en Algérie sur le temps long 1876–2007, Les Notes d’analyse du CIHEAM, n 39 – Septembre 2008, 11p. https://doi.org/10.4000/mediterranee.6827

  • Meng R, Wu J, Schwager K, Zhao F, Dennison P, Cook B, Brewster K, Green T, Serbin S (2017) Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a pine barrens ecosystem. Remote Sens Environ 191:95–109

    Article  Google Scholar 

  • Meteo (2017) Meteorological data web site. http://www.meteo.tn/htmlar/donnees/juil.html

  • Miller JD, Quayle B (2015) Calibration and validation of immediate post-fire satellite derived data to three severity metrics. Fire Ecol 11:12–30. https://doi.org/10.4996/fireecology.1102012

    Article  Google Scholar 

  • Miller G, Chen E, Cole SW (2009) Health psychology: developing biologically plausible models linking the social world and physical health. Annu Rev Psychol 60:501–524

  • Moreira TR, Santos AR, Dalfi RL, Campos RF, Santos GMADA, Eugenio FC (2015) Land use and occupation analysis of permanent preservation areas in the municipality of Muqui, Espirito Santo state, Brazil. Floram 22:141–152. https://doi.org/10.1590/2179-8087.019012

    Article  Google Scholar 

  • Myers N, Mittlemeier RA, Mittlemeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Napolitano P, Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the Vienna Conference on HydroGIS 96: application of geographic information systems in hydrology and water resources management. IAHS Pub 235, 559–566

  • Nurdiana A, Risdiyanto I (2015) Indicator determination of forest and land fires vulnerability using Landsat-5 TM data (case study: Jambi Province). Procedia Environ Sci 24:141–151

    Article  Google Scholar 

  • Paneto GG, Santos AB, Klippel AH, Santos AR (2015) Using DNA barcodes to identify road-killed animals in two Atlantic forest nature reserves, Brazil. PLoS ONE 10:1–15. https://doi.org/10.1371/journal.pone.0134877

    Article  Google Scholar 

  • Peluzio TMO, Santos AR, Fiedler NC, Bauer MO, Garcia GO, Simão JBP, Peluzio JBE (2013) Photo interpretive comparison between aerial photography and satellite imaging. Ciência Florestal 23:537–544. https://doi.org/10.5902/198050989298

    Article  Google Scholar 

  • Pérez JM (2013) Optimal location of points set maximizing areal visibility. GeoFocus 13(1), 195–219. http://geofocus.rediris.es/2013/Articulo9_2013_1.pdf

  • Pirovani DB, Silva AG, Santos AR (2015) Evolution of land use and landscape analysis in the area around the RPPN Cafundó, ES. Cerne 21:27–35. https://doi.org/10.1590/01047760201521011182

    Article  Google Scholar 

  • Pirovani DB, Silva AG, Santos AR, Cecílio RA, Martins SV, Gleriani JM (2014) Spatial analysis of forest fragments in the Itapemirim River basin. ES Rev Árvore 38:271–281. https://doi.org/10.1590/S0100-67622014000200007

    Article  Google Scholar 

  • Puspita G, Imas S, Sitanggang S (2016) Web-based classification application for forest fire data using the shiny framework and the C5.0 algorithm. Procedia Environ Sci 33:332–339

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H (2011a) Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrol Sci J 56(2):1–17

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H, Anselme B (2011b) Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: application to Souassi Aquifer Tunisian Sahel. Agric Water Manag 98:1671–1682

    Article  Google Scholar 

  • Santos AR ,Chimalli T, Peluzio JBE, Silva AG, Santos GMADA, Lorenzon AS, Teixeira TR, Castro NLM, Ribeiro CAAS (2016a) Influence of relief on permanent preservation areas. Sci Total Environ 541 1296–1302. https://doi.org/10.1016/j.scitotenv.2015.10.026

  • Santos GMADA, Santos AR, Teixeira LJQ, Saraiva SH, Freitas DF, Pereira Jr OS, Ribeiro CAAS, Lorenzon AS, Eugenio FC, Neves AA, Queiroz MELR, Scherer R (2016b) GIS applied to agriclimatological zoning and agrotoxin residue monitoring in tomatoes: a case study in Espírito Santo state, Brazil. J Environ Manag 166 429–439. https://doi.org/10.1016/j.jenvman.2015.10.040

  • Sebei S (2015) Le degré météorologique du risque incendie de forêt (DMRIF): méthode d’évaluation du risque d’incendie en Tunisie, XXVIIIe Colloque de l’Association Internationale de Climatologie, Liège

  • Semeraro T, Mastroleo G, Aretano R, Facchinetti G, Zurlini G, Petrosillo I (2016) GIS fuzzy expert system for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas. J Environ Manage 168:94–103

    Article  Google Scholar 

  • Siknun GP, Sitanggang IS (2016) Web-based classification application for forest fire data using the shiny framework and the C5.0 Algorithm Procedia Environ Sci 33:332–339

  • Silva KG, Santos AR, Silva AG, Peluzio JBE, Fiedler NC, Zanetti SS (2015) Analysis of space-time dynamics of forest fragments in the Alegre river subwatershed, Brazil. Cerne 21:311–318. https://doi.org/10.1590/01047760201521021562

    Article  Google Scholar 

  • Star JL, Estes JE, Davis F (1991) Improved integration of remote sensing and geographic information systems: a background to NCGIA initiative 12. Photogramm Eng Remote Sens 57:643–645

    Google Scholar 

  • Thompson JD, Lavergne S, Affre L, Gaudeul M, Debussche M (2005) Ecological differentiation of Mediterranean endemic plants. Taxon 54(4):967–976

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geog Rev 38:55–94

    Article  Google Scholar 

  • USGS burn severity (n.d.) Overview of applied remote sensing principles (http://burnseverity.cr.usgs.gov/overview/nbr/index.php)

  • You W, Lin L, Wu L, Ji Z, Yu J, Zhu J, Fan Y, He D (2017) Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability. Ecol Ind 77:176–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa Saidi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 1364 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, S., Younes, A.B. & Anselme, B. A GIS-remote sensing approach for forest fire risk assessment: case of Bizerte region, Tunisia. Appl Geomat 13, 587–603 (2021). https://doi.org/10.1007/s12518-021-00369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-021-00369-0

Keywords