Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study | Arabian Journal of Geosciences Skip to main content

Advertisement

Log in

Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This study examined the efficacy of three machine ensemble classifiers, namely, random forest, rotation forest and AdaBoost, in assessing flood susceptibility in an arid region of southern Iraq. A dataset was created from flooded and non-flooded areas to train and validate the ensemble classifiers using a binary classification scheme (1—flood, 0—non-flood). The prepared dataset was then partitioned into two sets with a 70/30 ratio: 70% (2478 pixels) for training and 30% (1062 pixels) for testing. A total of 10 influential flood factors were selected and prepared based on data availability and a literature review. The selected factors were surface elevation, slope, plain curvature, topographic wetness index, stream power index, distance to rivers, drainage density, lithology, soil and land use/land cover. The information gain ratio was first utilised to explore the predictive abilities of the factors. The predictive performances of the three ensemble models were compared using six statistical measures: sensitivity, specificity, accuracy, kappa, root mean square error and area under the operating characteristics curve. The results revealed that the AdaBoost classifier was the best in terms of the statistical measures, followed by the random forest and rotation forest models. A flood susceptibility map was prepared based on the result of each classifier and classified into five zones: very low, low, moderate, high and very high. For the model with the best performance, i.e., the AdaBoost model, these zones were distributed over an area of 6002 km2 (44%) for the very low–low zone, 2477 km2 (18%) for the moderate zone and 5048 km2 (40%) for the high–very high zones. This study proved the high capabilities of ensemble machine learning classifiers to decipher flood susceptibility zones in an arid region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Al-Abadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Abadi, A.M. Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci 11, 218 (2018). https://doi.org/10.1007/s12517-018-3584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3584-5

Keywords

Navigation