Using Terrestrial Laser Scanning for the Recognition and Promotion of High-Alpine Geomorphosites | Geoheritage Skip to main content

Advertisement

Log in

Using Terrestrial Laser Scanning for the Recognition and Promotion of High-Alpine Geomorphosites

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

High-alpine geomorphosites are poorly understood and developed, mostly because of the heavy constraints of high mountain areas. Meanwhile, they are geoheritage areas that are often extremely vulnerable to global warming: glaciers and permafrost areas are currently affected by major changes due to increasing air temperature. To deal with the high spatial variability of landforms and processes, research on alpine geomorphosites often needs the use of advanced methods of high-resolution topography, among which terrestrial laser scanning plays an increasingly crucial role. Carried out on some tenth of high-elevation sites across the Alps since the beginning of the 2000s, this method is particularly interesting for the recognition and development of high-alpine geomorphosites. Indeed, it can be implemented for identifying and characterizing the geomorphic objects (survey, monitoring and mapping), helping planning and protection policies and serving geotouristic development (communication about the processes involved, basis for documents).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abellan A, Vilaplana JM, Martinez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Eng Geol 88:136–148

    Article  Google Scholar 

  • Adams JC, Chandler JH (2002) Evaluation of lidar and medium scale photogrammetry for detecting soft-cliff coastal change. Photogramm Rec 17:405–418

    Article  Google Scholar 

  • Alcantara-Ayala I (2009) Geomorphosites managements in areas sensitive to natural hazards. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. München, Pfeil Verlag, pp 163–173

    Google Scholar 

  • Avian M, Bauer A (2006) First results on monitoring glacier dynamics with the aid of terrestrial laser scanning on Pasterze Glacier (Hohe Tauern, Austria). Grazer Schriften der Geographie und Raumforschung 41:27–36

    Google Scholar 

  • Avian M, Kellerer-Pirklbauer A, Bauer A (2009) LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Hazards Earth Syst Sci 9:1087–1094

    Article  Google Scholar 

  • Bauer A, Paar G, Kaufmann V (2003) Terrestrial laser scanning for rock glacier monitoring. In: Proceedings of the 8th international conference on permafrost, Zürich, pp 55–60

  • Bauer A, Paar G, Kaltenböck A (2005) Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proceedings of the 1st international symposium on geo-information for disaster management, Delft, The Netherlands, pp 393–406

  • Bauer A, Kaufmann V, Kellerer-Pirklbauer A, Avian M, Paar G (2006) Terrestrial laser scanning for glacier monitoring: a comparison to standard geodetic and photogrammetric methods, and documentation of the glacier retreat of Goessnitzkees (Schober group, Austria) between 2000 and 2005. Abstract of the 9th international symposium on high mountain remote sensing cartography, Graz, Austria, 1 p

  • Beniston M (2004) The 2003 heat wave in Europe. A shape of things to come? Geophys Res Lett 31:2022–2026

    Article  Google Scholar 

  • Beniston M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys 162:1587–1606

    Article  Google Scholar 

  • Besl P, McKay N (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256

    Article  Google Scholar 

  • Bodin X, Schoeneich P, Jaillet S (2008) High-resolution DEM extraction from terrestrial LiDAR topometry and surface kinematics of the creeping alpine permafrost: the Laurichard rock glacier case study (southern French Alps). In: Proceedings of the 9th international conference on permafrost, Fairbanks, Alaska, 1, pp 137–142

  • Bodin X, Thibert E, Fabre D (2009) Two decades of response (1986–2006) to climate by the Laurichard rock glacier. Permafr Periglac Process 20:331–344

    Article  Google Scholar 

  • Chardon M (1984) Montagne et haute montagne alpine, critères et limites morphologiques remarquables en haute montagne. Rev Géogr Alp 72:213–224

    Article  Google Scholar 

  • Conforti D, Deline P, Mortara G, Tamburini A (2005) Terrestrial scanning LiDAR technology applied to study the evolution of the ice-contact Miage lake (Mont Blanc, Italy). Report on the Joint ISPRS Commission VI, WG IV/4, 5 p

  • Deline P (2009) Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene. Quat Sci Rev 28:1070–1083

    Article  Google Scholar 

  • Deline P, Bölhert R, Coviello V, Cremonese E, Gruber S, Krautblatter M, Jaillet S, Malet E, Morra di Cella U, Noetzli J, Pogliotti P, Rabatel A, Ravanel L, Sadier B, Verleysdonk S (2009) L’Aiguille du Midi (massif du Mont Blanc): un site remarquable pour l’étude du permafrost des parois d’altitude. Collection EDYTEM 8:135–146

  • Deline P, Grange C, Jaillet S, Tamburini A (2011) Sept ans de suivi de la dynamique de la falaise de glace du lac du Miage (massif du Mont Blanc) par scanner laser terrestre. Collection EDYTEM 12:95–106

    Google Scholar 

  • Deroux B (2012) Apport de la lasergrammétrie terrestre pour l’étude des déformations lentes des versants de montagne (glaciers et permafrost). Mémoire de fin d’étude, École Supérieure de Géodésie et Topographie, Le Mans, 51 p

  • Diolaiuti G, Smiraglia C (2010) Changing glaciers in a changing climate: how vanishing geomorphosites have been driving deep changes in mountain landscapes and environments. Géomorphologie 2:131–152

    Article  Google Scholar 

  • Eggert DW, Fitzgibbon AW, Fisher RB (1998) Simultaneous registration of multiple range views for use in reverse engineering of CAD models. Comp Vis Im Underst 69:253–272

    Article  Google Scholar 

  • Fey C, Zangerl C, Haas F, Rutzinger M, Sailer R, Bremer M (2012) Rock slide deformation measurements with terrestrial laser scanning in inaccessible high mountain areas. Geophys Res Abstr 14:11944–1

    Google Scholar 

  • Francou B, Reynaud L (1992) 10 years of surficial velocities on a Rock glacier (Laurichard, French Alps). Permafr Periglac Process 3:209–213

    Article  Google Scholar 

  • Garavaglia V, Pelfini M, Bollati I (2010) The influence of climate change on glacier geomorphosites: the case of two Italian glaciers (Miage Glacier, Forni Glacier) investigated through dendrochronology. Géomorphologie 2:153–164

    Article  Google Scholar 

  • Ghiraldi L, Coaratza P, Marchetti M, Giardino M (2010) GIS and geomatics application for the evaluation and exploitation of Piemonte geomorphosites. In: Regolini-Bissig G, Reynard E (eds) Mapping geoheritage. Geovisions 35:97–113

  • Giardino M, Perotti L, Carletti R, Russo S (2010) Creation and test of a mobile GIS application to support field data collection and mapping activities on geomorphosites. In: Regolini-Bissig G, Reynard E (eds) Mapping geoheritage. Geovisions 35:115–127

  • Grandgirard V (1997) Géomorphologie, protection de la nature et gestion du paysage. Université de Fribourg, Thèse de Doctorat, 420 p

    Google Scholar 

  • Grandgirard V (1999) L’évaluation des géotopes. Geol Insubrica 4:66–69

    Google Scholar 

  • Haeberli W (2008) Changing view of changing glaciers. In: Orlove B, Wiegandt E, Luckman BH (eds) Darkening peaks: glacier retreat, science and society. University of California Press, Los Angeles, pp 23–32

    Google Scholar 

  • Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kaab A (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17:189–214

    Article  Google Scholar 

  • Hartmeyer I, Keuschnig M, Delleske R, Schrott L (2012) Reconstruction of the Magnetkoepfl rockfall event—detecting rock fall release zones using terrestrial laser scanning, Hohe Tauern, Austria. Geophys Res Abs 14:12488

    Google Scholar 

  • Heritage G, Large A (2009) Laser scanning for the environmental sciences. Wiley, Chichester, 288 p

    Book  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Locat A, Locat J, Turmel D, Robitaille D, Demers D, Locat P (2009) Use of ground-based LIDAR for the analysis of retrogressive landslides in sensitive clay and of rotational landslides in river banks. Can Geotech J 46:1379–1390

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellan A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LiDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Lieb GK, Avian M, Gspurning J (2008) The response of partially debris-covered valley glaciers to climate change: the example of the Pasterze Glacier (Austria) in the period 1964 to 2006. Geogr Ann A 90:269–285

    Article  Google Scholar 

  • Kenner R, Phillips M, Danioth C, Denier C, Thee P, Zgraggen A (2011) Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laserscanning: Gemsstock, Swiss Alps. Cold Reg Sci Tech 67:157–164

    Article  Google Scholar 

  • Maillard B, Reynard E (2011) Inventaire des géomorphosites des vallées d’Entrement et de Ferret (Valais) et propositions de valorisations. In: Lambiel C, Reynard E, Scapozza C (eds) La géomorphologie alpine: entre patrimoine et contraintes. Geovisions 36:1–17

  • Martelli D, Alberto W, Tamburini A (2008) Rilievi laser scanner nell’ambito del Progetto Interreg IIIA Alcotra n. 196 PERMAdataROC. IMAGEO S.r.l., unpublished report

  • Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1:531–535

    Article  Google Scholar 

  • Otto JC, Keuschnig M, Götz J, Marbach M, Schrott L (2012) Detection of mountain permafrost by combining high resolution surface and subsurface information—an example from the Glatzbach catchment, Austrian Alps. Geogr Ann A 94:43–57

    Article  Google Scholar 

  • Panizza M (2001) Geomorphosites: concepts, methods and example of geomorphological survey. Chin Sci Bull 46:4–6

    Article  Google Scholar 

  • Panizza M, Piacente S (1993) Geomorphological assets evaluation. Z Geomorphol 87:13–18

    Google Scholar 

  • Rabatel A, Deline P, Jaillet S, Ravanel L (2008) Rock falls in high-alpine rock walls quantified by terrestrial LiDAR measurements: a case study in the Mont Blanc area. Geophys Res Lett 35, L10502

    Article  Google Scholar 

  • Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc): évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du Petit Age Glaciaire. Géomorphologie 4:261–272

    Google Scholar 

  • Ravanel L, Deline P, Jaillet S (2010) Quantification des éboulements/écroulements dans les parois de la haute montagne alpine : quatre années de laserscanning terrestre dans le massif du Mont-Blanc. Rev Fr Photogram Télédétec 192:58–65

    Google Scholar 

  • Ravanel L, Deline P, Jaillet S (2011) Quatre années de suivi de la morphodynamique des parois rocheuses du massif du Mont Blanc par laserscanning terrestre. Collection EDYTEM 12:69–76

    Google Scholar 

  • Ravanel L, Deline P, Lambiel C, Vincent C (2013) Instability of a highly vulnerable high alpine rock ridge: the lower Arête des Cosmiques (Mont Blanc massif, France). Geogr Ann A. doi:10.1111/geoa.12000

    Google Scholar 

  • Regolini G (2012) Cartographier les géomorphosites. Géovisions 38:294

    Google Scholar 

  • Reynard E (2005) Géomorphosites et paysages. Géomorphologie 3:181–188

    Article  Google Scholar 

  • Reynard E (2009) Geomorphosites: definitions and characteristics. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. München, Pfeil Verlag, pp 63–71

    Google Scholar 

  • Shan J, Toth CK (2009) Topographic laser ranging and scanning: principles and processing. CRC Press, New York, USA, 590 p

    Google Scholar 

  • Slob S, Hack R (2004) 3D terrestrial laser scanning as a new field measurement and monitoring technique. In: Hack R, Azzam R, Charlier R (eds) Engineering geology for infrastructure planning in Europe. A European perspective. Lecture note in Earth Sciences. Springer, Berlin / Heidelberg, pp 179–190

    Chapter  Google Scholar 

  • Smith BJ, Orford JD, Betts NL (2009) Management challenges of a dynamic geomorphosite: climate change and the Giant’s Causeway Heritage Site. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. München, Pfeil Verlag, pp 145–162

    Google Scholar 

  • Viero A, Furlanis S, Squarzoni C, Teza G, Galgaro A, Gianolla P (2012) Dynamics and mass balance of the 2007 Cima Una rockfall (Eastern Alps, Italy). Landslides. doi:10.1007/s10346-012-0338-4

    Google Scholar 

  • Young AP, Ashford SA (2006) Application of airbone LiDAR for seacliff volumetric change and beach-sediment budget contribution. J Coast Res 22:307–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ravanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravanel, L., Bodin, X. & Deline, P. Using Terrestrial Laser Scanning for the Recognition and Promotion of High-Alpine Geomorphosites. Geoheritage 6, 129–140 (2014). https://doi.org/10.1007/s12371-014-0104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12371-014-0104-1

Keywords

Navigation