Abstract
In this paper, stiffness and impedance control concepts are used to solve position and force control for robot-aided rehabilitation. New asymptotic stability conditions are proposed using a suitable Lyapunov approach and based on the relationship between the dynamics of the robot and its energy. The efficiency of the proposed approach is tested on a planar 3 DOF robot-aided rehabilitation constrained to a circular trajectory. The robotic device is configured to be safe and stable in compliant motion in contact with the human arm. It is also designed to be adapted easily to different subjects for performing different tasks. Force and control parameters are tuned using a non linear optimization strategy for which the stability conditions are considered as inequality constraints. Simulation results show that the robot could guide the upper limb of subjects in circular movements under predefined model of the external force and prove the stability and the performances of the compliant motion control strategy.
Similar content being viewed by others
References
Masiero S, Celia A, Rosati G, Armani M (2007) Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 88(2):142–149. doi:10.1016/j.apmr.2006.10.032
Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121. doi:10.1177/1545968307305457
Kiguchi K, Kariya S, Watanabe K, Izumi K, Fukuda T (2001) An exoskeletal robot for human elbow motion support—sensor fusion, adaptation, and control. IEEE Trans Syst Man Cybern, Part B, Cybern 31(3):353–361. doi:10.1109/3477.931520
Papageorgiou X, McIntyre J, Kyriakopoulos KJ (2006) Towards recognition of control variables for an exoskeleton. In: Proceeding of the IEEE international symposium of intelligent control. doi:10.1109/CACSD-CCA-ISIC.2006.4777125
Stephen JB, Ian EB, Stephen HS (2007) A planar 3DOF robotic exoskeleton for rehabilitation and assessment. In: Proceeding of the 29th annual international conference of the IEEE EMBS. doi:10.1109/IEMBS.2007.4353216
Stephen JB, Ian EB, Stephen HS (2009) Performance evaluation of a planar 3DOF robotic exoskeleton for motor assessment. J Med Devices 3:1–12. doi:10.1115/1.3131727
Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R, Roy RR, De Leon R, Bobrow JE, Harkema SJ, Edgerton VR (2006) Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev 43:657–670. doi:10.1682/JRRD.2005.04.0073
Jan FV, Rik K, Edsko EGH, Ralf E, Edwin HFVA, Herman VK (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386. doi:10.1109/TNSRE.2007.903919
Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, Ijzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–183. doi:10.1682/JRRD.2005.04.0076
Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K et al (2003) Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Auton Robots 15(1):7–20. doi:10.1023/A:1024494031121
Linde RQVD, Lammertse P (2003) HapticMaster—a generic force controlled robot for human interaction. Ind Robot 30:515–524. doi:10.1108/01439910310506783
Soichi N, Ryojun I, Takahiro W, Kazuki M, Hideki S, Hitoshi H (2008) A study on impedance control using passive elements for human-assist system. In: Proceeding of the SICE annual conference. doi:10.1109/SICE.2008.46549722008
Krebs HI, Volpe BT, Aisen ML, Hogan N (2000) Increasing productivity and quality of care: robot-aided neurorehabilitation. J Rehabil Res Dev 37(6):639–652. http://bvs.insp.mx/articulos/2/8/03042001.pdf
Van der Kooij H, Veneman J, Ekkelenkamp R (2006) Compliant actuation of exoskeletons. In: Lazinica A (ed) Mobile robotics-towards new applications, Mammendorf. ISBN 978-3-86611-314-5
Vukobratovic MK, Tuneski A (1996) Adaptive control of single rigid robotic manipulators interacting with dynamic environment—an overview. J Intell Robot Syst 17:1–30. doi:10.1007/BF00435714
Raibert M, Craig JJ (1981) Hybrid position/force control of manipulators. J Dyn Syst Meas Control 120:126–133. doi:10.1115/1.3139652
Salisbury JK (1980) Active stiffness control of a manipulator in Cartesian coordinates. In: Proceeding of the IEEE international conference on decision and control including the symposium on adaptive processes. doi:10.1109/CDC.1980.272026
Hogan N (1984) Impedance control of industrial robots. Robot Comput-Integr Manuf 1:97–113. doi:10.1016/0736-5845(84)90084-X
Hogan N (1985) Impedance control: an approach to manipulators: Part 1, 2, 3. J Dyn Syst Meas Control 107:1–24. doi:10.1115/1.3140702
Chiaverini S, Sciavicco L (1993) The parallel approach to force/position control of robotic manipulators. IEEE Trans Robot Autom. doi:10.1109/70.246048
Kamnik R, Matko D, Bajd T (1998) Application of model reference adaptive control to industrial robot impedance control. J Intell Robot Syst 22:153–163. doi:10.1023/A:1007932701318
Sungchul K, Kiyoshi K, Kazuhito Y, Tetsuo K, Byungchan K, Shinsuk P (2010) Control of impulsive contact force between mobile manipulator and environment using effective mass and damping controls. Int J Precis Eng Manuf 11:697–704. doi:10.1007/s12541-010-0082-4
Vukobratovic MK, Rodić AG, Ekalo Y (1997) Impedance control as a particular case of the unified approach to the control of robots interacting with a dynamic known environment. J Intell Robot Syst 18:191–204. doi:10.1023/A:1007915307723
Chiaverini S, Siciliano B, Villani L (1999) A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans Mechatron 4(3):273–285. doi:10.1109/3516.789685
Karunakar SB, Goldenberg AA (1988) Contact stability in model-based force control systems of robot manipulators. In: Proceeding of the IEEE international symposium on intelligent control. doi:10.1109/ISIC.1988.65467
Lawrence DA (1988) Impedance control stability properties in common implementation. In: Proceeding of the IEEE international conference on robotics and automation. doi:10.1109/ROBOT.1988.12222
Surdilovic D (1996) Contact stability issues in position based impedance control: theory and experiments. In: Proceeding of the IEEE international conference on robotics and automation. doi:10.1109/ROBOT.1996.506953
Kazerooni H, Waibel BJ, Kim S (1990) On the stability of robot compliant motion control: theory and experiments. J Dyn Syst Meas Control 112:417–426. doi:10.1115/1.2896159
Hogan N (1988) On the stability of manipulator performing contact tasks. IEEE J Robot Autom 4:677–686. doi:10.1109/56.9305
Tsumugiwa T, Yokogawa R, Yoshida K (2004) Stability analysis for impedance control of robot for human-robot cooperative task system. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. doi:10.1109/IROS.2004.1390020
Duchaine V, Gosselin CM (2008) Investigation of human-robot interaction stability using Lyapunov theory. In: Proceeding of the IEEE/RSJ international conference on robotics and automation. doi:10.1109/ROBOT.2008.4543531
Seul Jung Hsia TC (1999) Stability and convergence analysis of robust adaptive force tracking impedance control of robot manipulators. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. doi:10.1109/IROS.1999.812751
Buerger SP, Hogan N (2007) Complementary stability and loop shaping for improved Human–Robot interaction. IEEE Trans Robot 23:232–244. doi:10.1109/TRO.2007.892229
Zeng G, Hemami A (1997) An overview of robot force control. Robotica 15:473–482. doi:10.1017/S026357479700057X
Yabuta T, Chona AJ, Beni G (1988) On the asymptotic stability of the hybrid position/force control scheme for robot manipulators. In: Proceedings of the IEEE international conference on robotics and automation. doi:10.1109/ROBOT.1988.12071
Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, New York
Mehdi H, Boubaker O (2010) Position/force control for constrained robotic systems: a Lyapunov approach. In: Proceedings of the IEEE international symposium on robotics and intelligent sensors. ISBN:978-4-9905048-0-9
Mehdi H, Boubaker O (2010) Rehabilitation of a human arm supported by a robotic manipulator: a position/force cooperative control. J Comput Sci 6(8):912–919. doi:10.3844/jcssp.2010.912.919
Winter DA (2009) Biomechanics and motor control of human movement. Wiley, New York
Aloulou A, Boubaker O (2010) Modeling and controlling a humanoid robot in the three dimensional space. In: Proceedings of the IEEE international symposium on robotics and intelligent sensors. ISBN:978-4-9905048-0-9
Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, San Diego
Powell MJD (1978) The convergence of variable metric methods for nonlinearly constrained optimization calculations. Academic Press, San Diego
Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87. doi:10.1109/86.662623
Burgar CG, Lum PS, Shor PC, Machiel Van der Loos HF (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 37(6):663–673
Ju MS, Lin CCK, Lin DH, Hwang IS, Chen SM (2005) A rehabilitation robot with force position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Trans Neural Syst Rehabil Eng 13(3):349–358. doi:10.1109/TNSRE.2005.847354
Jingguo W, Yangmin L (2010) A cooperated-robot arm used for rehabilitation treatment with hybrid impedance control method. In: Proceedings of the third international conference on intelligent robotics and applications. doi:10.1007/978-3-642-16587-0_42
Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H et al (2007) Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng 15(3):336–346. doi:10.1109/TNSRE.2007.903903
Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil 6(1):6–20. doi:10.1186/1743-0003-6-20
Akdoǧan E, Adli MA (2011) The design and control of a therapeutic exercise robot for lower limb rehabilitation: physiotherabot. Mechatronics 21(3):509–522. doi:10.1016/j.mechatronics.2011.01.005
Xu G, Song A, Li H (2011) Control system design for an upper-limb rehabilitation robot. Adv Robot 25(1–2):229–251. doi:10.1163/016918610X538561
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mehdi, H., Boubaker, O. Stiffness and Impedance Control Using Lyapunov Theory for Robot-Aided Rehabilitation. Int J of Soc Robotics 4 (Suppl 1), 107–119 (2012). https://doi.org/10.1007/s12369-011-0128-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12369-011-0128-5