Optimal strategies for two-person normalized matrix game with variable payoffs | Operational Research
Skip to main content

Optimal strategies for two-person normalized matrix game with variable payoffs

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper considers a two-person zero-sum game model in which payoffs are varying in closed intervals. Conditions for the existence of saddle point for this model is studied in this paper. Further, a methodology is developed to obtain the optimal strategy for this game as well as the range of the corresponding optimal values. The theoretical development is verified through numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akyar E, Akyar H, Düzce SA (2011) Brown-robinson method for interval matrix games. Soft Comput 15(10):2057–2064

    Article  Google Scholar 

  • Bhurjee A, Panda G (2012) Efficient solution of interval optimization problem. Math Methods Oper Res 76(3):273–288

    Article  Google Scholar 

  • Cai Y, Daskalakis C (2011) On minmax theorems for multiplayer games. In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, SIAM, pp 217–234

  • Collins WD, Hu C (2008a) Interval matrix games. In: Knowledge processing with interval and soft computing. Springer, pp 1–19

  • Collins WD, Hu C (2008b) Studying interval valued matrix games with fuzzy logic. Soft Comput 12(2):147–155

    Article  Google Scholar 

  • Daskalakis C, Papadimitriou CH (2009) On a network generalization of the minmax theorem. In: Proceedings of the 36th internatilonal collogquium on automata, languages and programming: part II, ICALP ’09. Springer, Berlin, Heidelberg, pp 423–434

  • Dutta B, Gupta S (2014) On nash equilibrium strategy of two-person zero-sum games with trapezoidal fuzzy payoffs. Fuzzy Inf Eng 6(3):299–314

    Article  Google Scholar 

  • Gao J, Liu ZQ, Shen P (2009) On characterization of credibilistic equilibria of fuzzy-payoff two-player zero-sum game. Soft Comput 13(2):127–132

    Article  Google Scholar 

  • Hladik M (2010) Interval valued bimatrix games. Kybernetika 46(3):435–446

    Google Scholar 

  • Levin V (1999) Antagonistic games with interval parameters. Cybernet Syst Anal 35(4):644–652

    Article  Google Scholar 

  • Li DF (2011) Linear programming approach to solve interval-valued matrix games. Omega 39(6):655–666

    Article  Google Scholar 

  • Li DF, Nan JX, Zhang MJ (2012) Interval programming models for matrix games with interval payoffs. Optim Methods Softw 27(1):1–16

    Article  Google Scholar 

  • Liu ST, Kao C (2009) Matrix games with interval data. Comput Ind Eng 56(4):1697–1700

    Article  Google Scholar 

  • Nash J (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36(1):48–49

    Article  Google Scholar 

  • Nash J (1951) Non-cooperative games. Annals Math 54(2):286–295

    Article  Google Scholar 

  • Nayak PK, Pal M (2009) Linear programming technique to solve two person matrix games with interval pay-offs. Asia Pac J Oper Res 26(02):285–305

    Article  Google Scholar 

  • Osborne MJ, Rubinstein A (1994) A course in game theory. MIT press, Cambridge

    Google Scholar 

  • Rosen JB (1965) Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3):520–534

    Article  Google Scholar 

  • Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  • Xefteris D (2015) Symmetric zero-sum games with only asymmetric equilibria. Games Econ Behav 89:122–125

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the referees whose suggestions have improved the presentation considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Bhurjee.

Appendix A: For player \(P_1\)

Appendix A: For player \(P_1\)

One may observe that an optimal strategy \({\mathbf {y}}^* \in Y\) and the value \(\varvec{\nu }=\varvec{\nu }({\mathbf {y}}^*)\) for player \(P_1\) is equivalent to the solution of the following interval linear programming problem:

$$\begin{aligned} \left. \begin{array}{ll} \text{ Maximize }~~\left[ \nu ^L,\nu ^R\right] \\ \text{ subject } \text{ to } \text{ the } \text{ constraints }\\ \underset{i\in {\varLambda }_m}{\sum }\left[ a_{ij}^Ly_i,a_{ij}^Ry_i\right] \succeq \left[ \nu ^L,\nu ^R\right] ,\quad ~j\in {\varLambda }_n \\ \underset{i\in {\varLambda }_m}{\sum }y_i=1,\quad y_i\ge 0,i \in {\varLambda }_m. \end{array} \right\} \end{aligned}$$
(15)

This is equivalent to the following interval programming problem:

$$\begin{aligned} \left. \begin{array}{ll} \text{ Maximize }[\nu ^L,\nu ^R]\\ \text{ subject } \text{ to } \text{ the } \text{ constraints }\\ \underset{i\in {\varLambda }_m}{\sum }\left( a_{ij}^L+t\left( a_{ij}^R-a_{ij}^L\right) \right) y_i\ge \left( \nu ^L+t\left( \nu ^R-\nu ^L\right) \right) ,\quad ~j\in {\varLambda }_n \\ \underset{i\in {\varLambda }_m}{\sum }y_i=1,\quad y_i\ge 0,\quad i \in {\varLambda }_m \end{array} \right\} \end{aligned}$$
(16)

For positive weight function \(w:[0,1]\rightarrow R_+\), we construct the following deterministic problem:

$$\begin{aligned} \left. \begin{array}{ll} \text{ Maximize }\int _0^1w(t)(\nu ^L+t(\nu ^R-\nu ^L))dt\\ \text{ subject } \text{ to } \text{ the } \text{ constraints }\\ \underset{i\in {\varLambda }_m}{\sum }a_{ij}^Ly_i\ge \nu ^L,\underset{i\in {\varLambda }_m}{\sum }a_{ij}^Ry_i\ge \nu ^R,\quad ~j\in {\varLambda }_n \\ \underset{i\in {\varLambda }_m}{\sum }y_i=1,y_i\ge 0,\quad i \in {\varLambda }_m. \end{array} \right\} \end{aligned}$$
(17)

From Theorem 1, optimal solution of problem (17) is an efficient solution of problem (16).

In particular, for weight function \(w(t)=1,\) problem (17) becomes,

$$\begin{aligned} \begin{array}{ll} \text{ Maximize }~\frac{1}{2}(\nu ^L+\nu ^R)\\ \text{ subject } \text{ to } \text{ the } \text{ constraints }\\ \underset{i\in {\varLambda }_m}{\sum }a_{ij}^Ly_i\ge \nu ^L,\underset{i\in {\varLambda }_m}{\sum }a_{ij}^Ry_i\ge \nu ^R,\quad ~j\in {\varLambda }_n \\ \underset{i\in {\varLambda }_m}{\sum }y_i=1,y_i\ge 0,\quad i \in {\varLambda }_m \end{array} \end{aligned}$$

1.1 Appendix B: For player \(P_2\)

One may observe that an optimal strategy \({\mathbf {z}}^* \in Z\) and the value \(\varvec{\omega }=\varvec{\omega }({\mathbf {z}}^*)\) for player \(P_2\) is equivalent to the solution of the following interval linear programming problem:

$$\begin{aligned} \left. \begin{array}{ll} \text{ Minimize }~~\left[ \omega ^L,\omega ^R\right] \\ \text{ subject } \text{ to } \text{ the } \text{ constraints }\\ \underset{j\in {\varLambda }_n}{\sum }\left[ a_{ij}^Lz_j,a_{ij}^Rz_j\right] \preceq \left[ \omega ^L,\omega ^R\right] ,\quad i\in {\varLambda }_m \\ \underset{j\in {\varLambda }_n}{\sum }z_j=1,z_j\ge 0,\quad j \in {\varLambda }_n. \end{array} \right\} \end{aligned}$$
(18)

This problem is equivalent to the following interval programming problem:

$$\begin{aligned} \left. \begin{array}{ll} \text{ Minimize }~~[\omega ^L,\omega ^R]\\ \text{ subject } \text{ to } \text{ the } \text{ constraints }\\ \underset{j\in {\varLambda }_n}{\sum }\left( a_{ij}^L+t\left( a_{ij}^R-a_{ij}^L\right) \right) z_i\le \left( \omega ^L+t\left( \omega ^R-\omega ^L\right) \right) ,\quad i\in {\varLambda }_m\\ \underset{j\in {\varLambda }_n}{\sum }z_j=1,\quad z_j\ge 0,j \in {\varLambda }_n \end{array} \right\} \end{aligned}$$
(19)

For positive weight function \(w:[0,1]\rightarrow R_+,\) we construct the following deterministic linear optimization problem:

$$\begin{aligned} \left. \begin{array}{ll} \text{ Minimize }~\int _0^1w(t)\left( \omega ^L+t\left( \omega ^R-\omega ^L\right) \right) dt\\ \text{ subject } \text{ to } \text{ the } \text{ constraints } \\ \underset{j\in {\varLambda }_n}{\sum }a_{ij}^Lz_j\le \omega ^L,\underset{j\in {\varLambda }_n}{\sum }a_{ij}^Rz_j\le \omega ^R,\quad i\in {\varLambda }_m\\ \underset{j\in {\varLambda }_n}{\sum }z_j=1,\quad z_j\ge 0,j \in {\varLambda }_n \end{array} \right\} \end{aligned}$$
(20)

From Theorem 1, optimal solution of problem (20) is an efficient solution of problem (19).

In particular, for weight function \(w(t)=1,\) problem (20) becomes,

$$\begin{aligned} \begin{array}{ll} \text{ Minimize }~\frac{1}{2}(\omega ^L+\omega ^R)\\ \text{ subject } \text{ to } \text{ the } \text{ constraints }\\ \underset{j\in {\varLambda }_n}{\sum }a_{ij}^Lz_j\le \omega ^L,\underset{j\in {\varLambda }_n}{\sum }a_{ij}^Rz_j\le \omega ^R,\quad i\in {\varLambda }_m\\ \underset{j\in {\varLambda }_n}{\sum }z_j=1,\quad z_j\ge 0,j\in {\varLambda }_n \end{array} \end{aligned}.$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhurjee, A.K., Panda, G. Optimal strategies for two-person normalized matrix game with variable payoffs. Oper Res Int J 17, 547–562 (2017). https://doi.org/10.1007/s12351-016-0237-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-016-0237-x

Keywords

Mathematics Subject Classification