A hybrid metaheuristic algorithm for generalized vertex cover problem | Memetic Computing Skip to main content
Log in

A hybrid metaheuristic algorithm for generalized vertex cover problem

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

The generalized vertex cover problem (GVCP) extends classic vertex cover problems to take both vertex and edge weights into consideration in the objective function. The GVCP consists in finding a vertex subset such that the sum of vertex weights together with all the corresponding edge weights is minimized. In this paper, we proposed a hybrid metaheuristic algorithm to solve GVCP (MAGVCP for short) that is based on evolutionary search and iterated neighborhood search. The algorithm uses population initializing procedure to produce high quality solutions, applies a dedicated crossover to generate offspring solutions, and finally utilizes an iterated best chosen neighborhood search to find better solutions. Experiments carried on random instances and DIMACS instances demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. ftp://dimacs.rutgers.edu/pub/challenges.

References

  1. Richter S, Helmert M, Gretton C (2007) A stochastic local search approach to vertex cover. In: Proceedings of KI-07, pp 412–426

  2. Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of computer computations. Plenum Press, pp 85–103

  3. Wang Y, Cai S, Yin M (2016) Two efficient local search algorithms for maximum weight clique problem. In: Proceedings of AAAI-16, pp 805–811

  4. Cai S, Su K, Chen Q (2010) EWLS: a new local search for minimum vertex cover. In: Proceedings of AAAI-10, pp 45–50

  5. Guo J, Niedermeier R, Wernicke S (2007) Parameterized complexity of vertex cover variants. Theory Comput Syst 41(3):501–520

    Article  MathSciNet  Google Scholar 

  6. Hassin R, Levin A (2006) The minimum generalized vertex cover problem. ACM Trans Algorithms 2:66–78

    Article  MathSciNet  Google Scholar 

  7. Kochenberger G, Lewis M, Glover F et al (2015) Exact solutions to generalized vertex covering problems: a comparison of two models. Optim Lett 9(7):1331–1339

    Article  MathSciNet  Google Scholar 

  8. Milanovic M (2010) Solving the generalized vertex cover problem by genetic algorithm. Comput Inform 29:1251–1265

    Google Scholar 

  9. Chandu DP (2014) A parallel genetic algorithm for generalized vertex cover problem. arXiv:1411.7612

  10. Li R, Hu S, Wang Y et al (2016) A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem. Neural Comput Appl. doi:10.1007/s00521-016-2324-6

  11. Zhang X, Li X, Wang J (2016) Local search algorithm with path relinking for single batch-processing machine scheduling problem. Neural Comput Appl. doi:10.1007/s00521-016-2339-z

    Article  Google Scholar 

  12. Samma H, Lim CP, Saleh JM et al (2016) A memetic-based fuzzy support vector machine model and its application to license plate recognition. Memet Comput 1–17. doi:10.1007/s12293-016-0187-0

  13. Mohanty PK, Parhi DR (2015) A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach. Memet Comput 7(4):255–273

    Article  Google Scholar 

  14. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  15. Wang YY, Li RZ, Zhou YP, Yin MH (2016) A path cost-based GRASP for minimum independent dominating set problem. Neural Comput Appl. doi:10.1007/s00521-016-2324-6

    Article  Google Scholar 

  16. Wang Y, Ouyang D, Zhang L, Yin M (2015) A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Sci China Inf Sci. doi:10.1007/s11432-015-5377-8

  17. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871

    Article  Google Scholar 

  18. Wang Y, Yin M, Ouyang D et al (2016) A novel local search algorithm with configuration checking and scoring mechanism for the set k-covering problem. Int Trans Oper Res. doi:10.1111/itor.12280

  19. Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370

    Article  Google Scholar 

  20. Li R, Shuli H, Gao J, Zhou Y, Wang Y, Yin M (2016) GRASP for connected dominating set problems. Neural Comput Appl. doi:10.1007/s00521-016-2429-y

    Article  Google Scholar 

  21. Dan AC, Bacardit J (2013) Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets. Memet Comput 5(2):95–130

    Article  Google Scholar 

  22. Nama S, Saha AK, Ghosh S (2016) A hybrid symbiosis organisms search algorithm and its application to real world problems. Memet Comput 1–20. doi:10.1007/s12293-016-0194-1

  23. Blum C, Puchinger J, Raidl GR et al (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

    Article  Google Scholar 

  24. Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(1):231–246

    Article  Google Scholar 

  25. Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux J-L (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144

    Article  MathSciNet  Google Scholar 

  26. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406

    Article  Google Scholar 

  27. Zhangjie F, Sun X, Qi L, Lu Z, Jiangang S (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98–B(1):190–200

    Google Scholar 

  28. Gu B, Sheng VS (2016) A robust regularization path algorithm for \(\nu \)-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796

  29. Vanneschi L (2014) Improving genetic programming for the prediction of pharmacokinetic parameters. Memet Comput 6(4):255–262. doi:10.1007/s12293-014-0143-9

    Article  Google Scholar 

  30. Jadon SS, Bansal JC, Tiwari R et al (2015) Accelerating artificial bee colony algorithm with adaptive local search. Memet Comput 7(3):215–230. doi:10.1007/s12293-015-0158-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this paper wish to extend their sincere gratitude to all anonymous reviewers for their efforts. This work was supported in part by NSFC (under Grant Nos. 61370156, 61503074, 61403076, 61402070, and 61403077), the Program for New Century Excellent Talents in University (NCET-13-0724), the Youth Foundation of Northeast Normal University (1205098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Li, R., Zhao, P. et al. A hybrid metaheuristic algorithm for generalized vertex cover problem. Memetic Comp. 10, 165–176 (2018). https://doi.org/10.1007/s12293-016-0216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-016-0216-z

Keywords

Navigation