Abstract
Microelectromechanical system (MEMS) reveals excellent flexibility and adaptability in miniaturization devices owing to its compact dimension, low power consumption, and fine performance. As a typical type of miniaturization tool, MEMS-based robotic microgripper has been widely employed in the manipulation of tiny micro-objects, material characterizations, and so on. This paper presents the state-of-the-art survey of prevalent MEMS-based actuation and sensing techniques, which can be applied in microgrippers. Five main types of actuators are reviewed in this survey, namely, electro-thermal actuators, electrostatic actuators, shape memory alloy actuators, piezoelectric actuators, and electromagnetic actuators. A review of recent sensing techniques is also conducted, which includes four popular sensing approaches in terms of capacitive sensors, electrothermal sensors, piezoresistive sensors, and piezoelectric sensors. Their advantages, disadvantages, and applications have been discussed in detail. Some perspectives on the future development are presented.

















Similar content being viewed by others
References
Mackay RE, Le HR, Keatch RP (2011) Design optimisation and fabrication of SU-8 based electro-thermal micro-grippers. J Micro-Nano Mechatron 6(1):13–22
Chowdhury S, Thakur A, Wang C, Svec P, Losert W, Gupta SK (2014) Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans Autom Sci Eng 11(2):338–347
Su J, Qiao H, Ou Z, Liu Z-Y (2015) Vision-based caging grasps of polyhedron-like workpieces with a binary industrial gripper. IEEE Trans Autom Sci Eng 12(3):1033–1046
Deole U, Lumia R, Shahinpoor M, Bermudez M (2008) Design and test of IPMC artificial muscle microgripper. J Micro-Nano Mechatron 4(3):95–102
Chang B, Shah A, Routa I, Lipsanen H, Zhou Q (2014) Low-height sharp edged patterns for capillary self-alignment assisted hybrid microassembly. J. Micro-Nano Mechatron 9(1):1–10
Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19(1):89–97
Kim K, Liu X, Zhang Y, Sun Y (2008) Micronewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback. In: Proceedings of the International Conference IEEE Robotics and Automation, pp 3100–3105
Beyeler F, Neild A, Oberti S, Bell D, Sun Y, Dual J, Nelson BJ (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15
Voland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61:1015–1023
Roch I, Bidaud P, Collard D, Buchaillot L (2003) Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J Micromech Microeng 12(2):330–336
Wei Y, Xu Q (2015) An overview of micro-force sensing techniques. Sens Actuators A Phys 234(1):359–374
Molhave K, Hansen O (2005) Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15(6):1265–1270
Duc TC, Lau G-K, Creemer JF, Sarro PM (2008) Electrothermal microgripper with large jaw displacement and integrated force sensors. J Microelectromech Syst 17(6):1546–1555
Greitmann G, Buser RA (1996) Tactile microgripper for automated handling of microparts. Sens Actuators A Phys 53(1):410–415
Tibrewala A, Phataralaoha A, Buttgenbach S (2008) Simulation, fabrication and characterization of a 3D piezoresistive force sensor. Sens Actuators A Phys 147(2):430–435
Bazaz SA, Khan F, Shakoor RI (2011) Design, simulation and testing of electrostatic SOI MUMPs based microgripper integrated with capacitive contact sensor. Sens Actuators A Phys 167(1):44–53
Khan F, Bazaz SA, Sohail M (2010) Design, implementation and testing of electrostatic SOI MUMPs based microgripper, Microsyst. Technol. 16(11):1967–1965
Sun Y, Fry SN, Potasek DP, Bell D, Nelson BJ (2005) Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. J Microelectromech Syst 14(1):4–11
Coskun MB, Moore S, Moheimani SOR, Neild A, Alan T (2014) Zero displacement microelectromechanical force sensor using feedback control. Appl Phys Lett 104(15):153–502
Lin Q, Jiang FK, Wang XQ, Xu Y, Han ZG, Tai YC, Lew J, Ho CM (2004) Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications. J Micromech Microeng 14(12):1640–1649
Wang Y, Zheng J, Ren G, Zhang P, Xu C (2011) A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater Struct 20(4):045–009
Hubbard NB, Culpepper ML, Howell LL (2006) Actuators for micropositioners and nanopositioners. Appl Mech Rev 59(6):324–334
Huang Q, Lee N (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64
Hickey R, Kujath M, Hubbard T (2002) Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators. J Vac Sci Tech A 20(3):971–974
Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci 102(41):14504–14508
Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242–253
Guan C, Zhu Y (2010) An electrothermal microactuator with Z-shaped beams. J Micromech Microeng 20 (8):085–014
Mankame N, Ananthasuresh G (2001) Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J Micromechan Microeng 11(5):452– 462
Zhang R, Chu J, Wang HX, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. J Microelectromech Syst 19(1):89–97
Chronis N, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14(4):857–863
Zhang R, Chu J, Chen Z (2011) A novel SU-8 electrothermal microgripper based on type synthesis of kinematic chain method. In: Proceedings 16th International Conference Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp 466–469
Solano B, Wood D (2007) Design and testing of a polymeric microgripper for cell manipulation. Microelectro Eng 84(5):1219–1222
Chu LL, Gianchandani YB (2003) A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing. J Micromech Microeng 13(2):297–285
Khazaai JJ, Qu H, Shillor M, Smith L (2011) Design and fabrication of electro-thermally activated micro gripper with large tip opening and holding force. In: Proceedings IEEE Sensors Limerick, pp 1445–1448
Yang S, Xu Q (2016) Design of a microelectromechanical systems microgripper with integrated electrothermal actuator and force sensor. Int J Adv Robot Sys 5:13
Xi X, Clancy T, Wu X, Sun Y, Liu X (2015) A MEMS XY-stage with sub-nanometer positioning resolution, In: Proceedings 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp 988–993
Krishnamoorthy U, Lee D, Solgaard O (2003) Self-aligned vertical electrostatic combdrives for micromirror actuation. J Microelectromech Syst 12(4):458–464
Lee AP, McConaghy CF, Sommargren G, Krulevitch P, Campbell EW (2003) Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry. J Microelectromech Syst 12(6):960–971
Jensen BD, Mutlu S, Miller S, Kurabayashi K, Allen JJ (2003) Shaped comb fingers for tailored electromechanical restoring force. J Microelectromech Syst 12(3):373–383
Zhao Y, Cu T (2003) Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique. J Micromech Microeng 13(3):430
Barbastathis G, Gregory N (2006) Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators. J Microelectromech Syst 15(4):811–821
Chang H, Zhao H, Ye F, Yuan G, Xie J, Kraft M, Yuan W (2014) A rotary comb-actuated microgripper with a large displacement range. Microsyst technol 20(1):119–126
Boudaoud M, Haddab Y, Le Gorrec Y (2010) Modelling of a MEMS-based microgripper: application to dexterous micrOmanipulation. In: Proceedings IEEE /RSJ International Conference on Intelligent and Robotic Systems, pp 5634– 5639
Piriyanont B, Moheimani SOR, Lai Y (2013) Design, modeling, and characterization of a MEMS micro-gripper with an integrated electrothermal force sensor. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 348–353
Piriyanont B, Moheimani SOR (2014) MEMS rotary microgripper with integrated electrothermal force sensor. J Microelectromech Syst 23(6):1249–1251
Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot 34(4):285–294
Munasinghe KC, Bowatta BGCT, Abayarathne HYR, Kumararathna N, Maduwantha LKAH, Arachchige NMP, Amarasinghe YWR (2016) New MEMS based micro gripper using SMA for micro level object manipulation and assembling. In: Proceedings 2016 Moratuwa Engineering Research Conference (MERCon), pp 36–41
AbuZaiter A, Nafea M, Ali MSM (2016) Development of a shape-memory-alloy micrOmanipulator based on integrated bimorph microactuators. Mechatronics 38:16–28
Bernstein JJ, Finberg SL, Houston K, Niles LC, Chen HD, Cross EL, Li KK, Udayakumar K (1997) Micromachined high frequency ferroelectric sonar transducers. IEEE Trans Ultrason Ferroelect Freq Contr 44(5):960–969
Wang LP, Wolf RA, Wang Y, Deng KK, Zou LC, Davis RJ, Trolier-McKinstry S (2003) Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. J Microelectromech Syst 12(4):433–439
Lee SS, Reid RP, White RM (1996) Piezoelectric cantilever microphone and microspeaker. J Microelectromech Syst 5(4):238–242
Maluf N (2002) An introduction to microelectromechanical systems engineering. Meas Sci Technol 13(2):229
Park J, Moon W (2003) A hybrid-type micro-gripper with an integrated force sensor. Microsyst Technol 9(8):511–519
Xu Q (2013) Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly. IEEE Trans Autom Sci Eng 10(3):503–514
Jeon C-S, Park J-S, Lee S-Y, Moon C-W (2007) Fabrication and characteristics of out-of-plane piezoelectric micro grippers using MEMS processes. Thin Solid Films 515(12):4901–4904
Kim WH, Park J, Shin KS, Park KB, Seong WK, Moon CW (2005) Simulation and fabrication of silicon micro-grippers actuated by piezoelectric actuator. Mater Sci Forum 475:1885–1888
Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioningy. IEEE Trans Control Syst Technol 15(5):802–823
Lantz MA, Rothuizen H, Drechsler U, Haeberle W, Despont M (2007) A vibration resistant nanopositioner for mobile parallel-probe storage applications. J Microelectromech Syst 16(1):130–139
Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14(6):1256
Jia Y, Jia M, Xu Q (2014) A dual-axis electrostatically driven MEMS microgripper. Int J Adv Robot Syst 11(Article ID 187):. doi:10.5772/59677
Muntwyler S, Kratochvil BE, Beyeler F, Nelson BJ (2010) Two-axis micro-tensile tester chip for measuring plant cell mechanics. In: Proceedings of IEEE Sensors, pp 2451–2454
Qu J, Zhang W, Jung A, Sliva S, Liu X (2015) A MEMS microgripper with two-axis actuators and force sensors for microscale mechanical characterization of soft materials. In: Proceedings IEEE International Conference on Automation Science and Engineering (CASE), pp 1620–1625
Chen D-S, Yeh P-F, Chen Y-F, Tsai C-W, Yin C-Y, Lai R-J, Tsai J-C (2014) An electrothermal actuator with two degrees of freedom serving as the arm of a MEMS gripper. IEEE Trans Ind Electron 61(10):5465–5471
Sergio M, Manaresi N, Tartagni M, Guerrieri R, Canegallo R (2002) A textile based capacitive pressure sensor. In: Proceedings of IEEE Sensors, pp 1625–1630
Ko C-T, Tseng S-H, Lu M. S-C (2006) A CMOS micromachined capacitive tactile sensor with high-frequency output. IEEE/ASME J Microelecromechan Syst 15(6):1708–1714
Shkel YM, Ferrier NJ (2003) Electrostriction enhancement of solid-state capacitance sensing Mechatronics,. IEEE/ASME Trans Mechatron 8(3):318–325
Xu Q (2015) Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sensors J 15(10):6017–6026
Hogervorst1 RP, Krijnen B, Brouwer DM, Engelen JBC, Staufer U (2010) A single-mask thermal displacement sensor in MEMS. In: Proceedings of 10th International Conference on European Society Precision Engineering Nanotechnology, Delft, The Netherlands, pp 462–465
Binning GK, Despont M, Lantz MA, Vettiger P (2007) Thermal movement sensor, U.S. Patent 7 186 019
Durig U (2005) Fundamentals of micromechanical thermoelectric sensors. J Appl Phys 98(4):044906–1-044906-14
Lantz MA, Binnig GK, Despont M, Drechsler U (2005) A micromechanical thermal displacement sensor with nanometre resolution. Nanotechnology 16(8):1089–1094
Zhu Y, Bazaei A, Moheimani SOR, Yuce MR (2010) A micromachined nanopositioner with on-chip electrothermal actuation and sensing. IEEE Electron Device Lett 31(10):1161–1163
Piriyanont B, Fowler AG, Moheimani SOR (2015) Force-controlled mems rotary microgripper. J Microelectromech Syst 24(4):1164–1172
Mei T, Ge Y, Chen Y, Ni L, Liao W-H, Xu Y, Li WJ (1999) Design and fabrication of an integrated three-dimensional tactile sensor for space robotic applications. In: Proceedings of 12th IEEE International Conference on Micro Electro Mechanical Systems, Orlando, FL, pp 112–117
Hasegawa Y, Shikida M, Shimizu T, Miyaji T, Sasaki H, Sato K, Itoigawa K (2004) A micromachined active tactile sensor for hardness detection. Sens Actuators A Phys 114(2-3):141–146
Sugiyama S, Takigawa M, Igarashi I (1983) Integrated piezoresistive pressure sensor with both voltage and frequency output. Sens Actuators 4:113–120
Gretillat F, Gretillat MA, de Rooij NF (1999) Improved design of a silicon micromachined gyroscope with piezoresistive detection and electromagnetic excitation. J Microelectromech Syst 8(3):243–250
Kane BJ, Cutkosky MR, Kovacs GTA (2000) A traction stress sensor array for use in high-resolution robotic tactile imaging. J Microelectromech Syst 9(4):425–434
Han K, Lee SH, Moon W, Park J (2006) Fabrication of the micro-gripper with a force sensor for manipulating a cell. In: Proceedings of SICE-ICASE International of Joint Conference, pp 5833– 5836
Molhave K, Hansen O (2005) Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15(6):1265–1270
Chen T, Chen L, Sun L, Wang J, Li X (2008) A sidewall piezoresistive force sensor used in a MEMS gripper. In: Proceedings of 2008 IEEE International Conference on Robotics and Applications (ICIRA), pp 207–216
Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20(9):092– 001
Dargahi J, Parameswaran M, Payandeh S (2000) A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments. J Microelectromech Syst 9(3):329–335
Kim DH, Kim B, Kang HJ (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micrOmanipulation. Microsyst Technol 10(4):275–280
Acknowledgments
The work was support by the Macao Science and Technology Development Fund under Grant No.: 090/2015/A3 and 052/2014/A1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, S., Xu, Q. A review on actuation and sensing techniques for MEMS-based microgrippers. J Micro-Bio Robot 13, 1–14 (2017). https://doi.org/10.1007/s12213-017-0098-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12213-017-0098-2