Life span of blowing-up solutions to the Cauchy problem for a time-fractional Schrödinger equation | Journal of Applied Mathematics and Computing
Skip to main content

Life span of blowing-up solutions to the Cauchy problem for a time-fractional Schrödinger equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we will consider the Cauchy problem for a time-fractional Schrödinger equation with Riemann–Liouville nonlinear fractional integral term. This class of equations have interesting applications for large systems of self-interactions, which allow us to use the fractional calculus techniques to investigate long range interactions and quantum processes. By utilizing the test function method and some important properties of fractional calculus, we give a blow-up result involving the criterion of verifying whether there is a global nontrivial weak solution. Then, by establishing some integral inequalities, we provide an upper bound estimate for the life span of the blowing-up solutions. Finally, a numerical example is presented to demonstrate the validity of our theoretical results. The obtained results generalize the previous ones, because the analogous problem with a time fractional derivative has not been studied so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MathSciNet  Google Scholar 

  2. Li, D.F., Wang, J.L., Zhang, J.W.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)

    Article  Google Scholar 

  3. Chen, X.L., Di, Y.N., Duan, J.Q., Li, D.F.: Linearized compact ADI schemes for nonlinear time-fractional Schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018)

    Article  MathSciNet  Google Scholar 

  4. Zhou, Y., Peng, L., Huang, Y.Q.: Duhamel’s formula for time-fractional Schrödinger equations. Math. Methods Appl. Sci. 77, 8345–8349 (2018)

    Article  Google Scholar 

  5. Peng, L., Zhou, Y., Ahmad, B.: The well-posedness for fractional nonlinear Schrödinger equations. Comput. Math. Appl. 221, 256–271 (2019)

    Google Scholar 

  6. Grande, R.: Space-time fractional nonlinear Schrödinger equation. SIAM J. Math. Anal. 51, 4172–4212 (2019)

    Article  MathSciNet  Google Scholar 

  7. Kirane, M., Nabti, A.: Life span of solutions to a nonlinear in time nonlinear fractional Schrödinger equation. Z. Angew. Math. Phys. 66, 1473–1482 (2015)

    Article  MathSciNet  Google Scholar 

  8. Prado, H., Ramírez, J.: The time fractional Schrödinger equation with a nonlinearity of Hartree type. J. Evol. Equ. 21, 1845–1864 (2021)

    Article  MathSciNet  Google Scholar 

  9. Kirane, M., Fino, A.Z.: Some nonexistence results for space-time fractional Schrödinger equations without gauge invariance. Fract. Calc. Appl. Anal. 25, 1361–1387 (2022)

    Article  MathSciNet  Google Scholar 

  10. Shao, X.K., Tang, G.-J.: Blow-up phenomena for a Kirchhoff-type parabolic equation with logarithmic nonlinearity. Appl. Math. Lett. 116, 106969 (2021)

    Article  MathSciNet  Google Scholar 

  11. Yang, H., Han, Y.Z.: Blow-up for a damped \(p\)-Laplacian type wave equation with logarithmic nonlinearity. J. Differ. Equ. 306, 569–589 (2022)

    Article  MathSciNet  Google Scholar 

  12. Wang, Z.Y., Yin, J.X., You, L.T.: Life span of solutions for a semilinear heat equation with inhomogeneous source. J. Differ. Equ. 350, 189–201 (2023)

    Article  MathSciNet  Google Scholar 

  13. Huo, W.T., Fang, Z.B.: Life span bounds for reaction–diffusion equation with a space-time integral source term. Z. Angew. Math. Phys. 74, 128 (2023)

    Article  MathSciNet  Google Scholar 

  14. Nabti, A.: Life span of blowing-up solutions to the Cauchy problem for a time-space fractional diffusion equation. Comput. Math. Appl. 78, 1302–1316 (2019)

    Article  MathSciNet  Google Scholar 

  15. Gabrick, E.C., Sayari, E., de Castro, A.S.M., Trobia, J., Batista, A.M., Lenzi, E.K.: Fractional Schrödinger equation and time dependent potentials. Commun. Nonlinear Sci. Numer. Simul. 123, 1072752 (2023)

    Article  Google Scholar 

  16. Wu, G.-Z., Dai, C.-Q.: Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation. Appl. Math. Lett. 106, 106365 (2020)

    Article  MathSciNet  Google Scholar 

  17. Emamirad, H., Rougirel, A.: Time-fractional Schrödinger equation. J. Evol. Equ. 20, 279–293 (2020)

    Article  MathSciNet  Google Scholar 

  18. Xu, Z.Z., Fu, Y.Y.: Two novel conservative exponential relaxation methods for the space-fractional nonlinear Schrödinger equation. Comput. Math. Appl. 142, 97–106 (2023)

    Article  MathSciNet  Google Scholar 

  19. Tayachi, S., Weissler, F.B.: New life-span results for the nonlinear heat equation. J. Differ. Equ. 375, 564–625 (2023)

    Article  MathSciNet  Google Scholar 

  20. Lin, S., Wang, Z.Y.: Existence of type-I blow-up solutions for the time-weighted parabolic Lane-Emden system. J. Math. Anal. Appl. 524, 127069 (2023)

    Article  MathSciNet  Google Scholar 

  21. Kuiper, H.J.: Life span of nonnegative solutions to certain quasilinear parabolic Cauchy problems. Electron. J. Differ. Equ. 66, 1–11 (2003)

    MathSciNet  Google Scholar 

  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  23. Ge, F., Chen, Y.: Optimal vaccination and treatment policies for regional approximate controllability of the time-fractional reaction–diffusion SIR epidemic systems. ISA Trans. 115, 143–152 (2021)

    Article  Google Scholar 

  24. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, vol. 1. Gordon and Breach Science Publishers, Yverdon Yverdon-les-Bains (1993)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11471015, 12301185) and the Natural Science Foundation of Anhui Province (1508085MA01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Feng Zhou.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhou, XF., Pang, D. et al. Life span of blowing-up solutions to the Cauchy problem for a time-fractional Schrödinger equation. J. Appl. Math. Comput. 69, 4401–4424 (2023). https://doi.org/10.1007/s12190-023-01931-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01931-2

Keywords

Mathematics Subject Classification