Outer independent signed double Roman domination | Journal of Applied Mathematics and Computing
Skip to main content

Outer independent signed double Roman domination

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Suppose \([3]=\{0,1,2,3\}\) and \([3^{-}]=\{-1,1,2,3\}\). An outer independent signed double Roman dominating function (OISDRDF) of a graph \(\Gamma \) is function \(l:V({\Gamma })\rightarrow [3^{-}]\) for which (i) each vertex t with \(l(t)=-1\) is joined to at least two vertices labeled a 2 or to at least one vertex z with \(l(z)=3\), (ii) each vertex t with \(l(t)=1\) is joined to at least a vertex z with \(l(z)\ge 2,\) (iii) \(l(N[t])=\sum _{w\in N[t]}l(w)\ge 1\) occurs for each vertex t, (iv) the set of vertices labeled \(-1\) under l is an independent set. The weight of an OISDRDF is the sum of its function values over all vertices, and the outer independent signed double Roman domination number (OISDRD-number) \(\gamma _{sdR}^{oi}(\Gamma )\) is the minimum weight of an OISDRDF on \(\Gamma \). We first show that determining the number \(\gamma _{sdR}^{oi}(\Gamma )\) is NP-complete for bipartite and chordal graphs. Then we provide exact values of this parameter for paths and cycles. Moreover, we show that for trees T of order \(n\ge 3,\) \(\gamma _{sdR}^{oi}(\Gamma )\le n-1,\) and we characterize extremal trees attaining this bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdollahzadeh Ahangar, H., Amjadi, J., Atapour, M., Chellali, M., Sheikholeslami, S.M.: Double Roman trees. ARS Combin. 145, 173–183 (2019)

    MathSciNet  MATH  Google Scholar 

  2. AbdollahzadehAhangar, H., Amjadi, J., Chellali, M., Nazari-Moghaddam, S., Sheikholeslami, S.M.: Trees with double Roman domination number twice the domination number plus two. Iran. J. Sci. Technol. Trans. A Sci. 43, 1081–1088 (2019)

    Article  MathSciNet  Google Scholar 

  3. Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: Signed double Roman domination in graphs. Discrete Appl. Math. 257, 1–11 (2019)

    Article  MathSciNet  Google Scholar 

  4. Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: Signed double Roman domination of graphs. Filomat 33, 121–134 (2019)

    Article  MathSciNet  Google Scholar 

  5. Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: On the double Roman domination in graphs. Discrete Appl. Math. 232, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  6. Amjadi, J., Nazari-Moghaddam, S., Sheikholeslami, S.M., Volkmann, L.: An upper bound on the double Roman domination number. J. Comb. Optim. 36, 81–89 (2018)

    Article  MathSciNet  Google Scholar 

  7. Amjadi, J., Yang, H., Nazari-Moghaddam, S., Sheikholeslami, S.M., Shao, Z.: Signed double Roman \(k\)-domination in graphs. Australas. J. Combin. 72, 82–105 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Anu, V., Aparna Lakshmanan, S.: Double Roman domination number. Discrete Appl. Math. 244, 198–201 (2018)

    Article  MathSciNet  Google Scholar 

  9. Beeler, R.A., Haynes, T.W., Hedetniemi, S.T.: Double Roman domination. Discrete Appl. Math. 211, 23–29 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: Roman domination in graphs. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Topics in Domination in Graphs. Springer, Berlin/Heidelberg (2020)

    MATH  Google Scholar 

  11. Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: Varieties of Roman domination. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Structures of Domination in Graphs. Springer, Berlin/Heidelberg (2021)

    MATH  Google Scholar 

  12. Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: Varieties of Roman domination II. AKCE J. Graphs Combin. 17, 966–984 (2020)

    Article  MathSciNet  Google Scholar 

  13. Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: A survey on Roman domination parameters in directed graphs. J. Combin. Math. Combin. Comput. to appear

  14. Shahbazi, L., Abdollahzadeh Ahangar, H., Khoeilar, R., Sheikholeslami, S.M.: Bounds on signed total double Roman domination. Commun. Comb. Optim. 5, 191–206 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Volkmann, L.: The double Roman domatic number of a graph. J. Combin. Math. Combin. Comput. 104, 205–215 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Volkmann, L.: Double Roman domination and domatic numbers of graphs. Commun. Comb. Optim. 3, 71–77 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Yang, H., Wu, P., Nazari-Moghaddam, S., Sheikholeslami, S.M., Zhang, X., Shao, Z., Tang, Y.Y.: Bounds for signed double Roman \(k\)-domination in trees. RAIRO—Oper. Res. 53, 627–643 (2019)

    Article  MathSciNet  Google Scholar 

  18. Yue, J., Wei, M., Li, M., Liu, G.: On the double Roman domination of graphs. Appl. Math. Comput. 338, 669–675 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, X., Li, Z., Jiang, H., Shao, Z.: Double Roman domination in trees. Inform. Process. Lett. 134, 31–34 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are deeply tankful to the reviewers for their valuable suggestions to improve the quality of this manuscript. H. Abdollahzadeh Ahangar was supported by the Babol Noshirvani University of Technology under research grant number BNUT/385001/00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdollahzadeh Ahangar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahzadeh Ahangar, H., Pour, F.N., Chellali, M. et al. Outer independent signed double Roman domination. J. Appl. Math. Comput. 68, 705–720 (2022). https://doi.org/10.1007/s12190-021-01535-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01535-8

Keywords

Mathematics Subject Classification