Abstract
Suppose \([3]=\{0,1,2,3\}\) and \([3^{-}]=\{-1,1,2,3\}\). An outer independent signed double Roman dominating function (OISDRDF) of a graph \(\Gamma \) is function \(l:V({\Gamma })\rightarrow [3^{-}]\) for which (i) each vertex t with \(l(t)=-1\) is joined to at least two vertices labeled a 2 or to at least one vertex z with \(l(z)=3\), (ii) each vertex t with \(l(t)=1\) is joined to at least a vertex z with \(l(z)\ge 2,\) (iii) \(l(N[t])=\sum _{w\in N[t]}l(w)\ge 1\) occurs for each vertex t, (iv) the set of vertices labeled \(-1\) under l is an independent set. The weight of an OISDRDF is the sum of its function values over all vertices, and the outer independent signed double Roman domination number (OISDRD-number) \(\gamma _{sdR}^{oi}(\Gamma )\) is the minimum weight of an OISDRDF on \(\Gamma \). We first show that determining the number \(\gamma _{sdR}^{oi}(\Gamma )\) is NP-complete for bipartite and chordal graphs. Then we provide exact values of this parameter for paths and cycles. Moreover, we show that for trees T of order \(n\ge 3,\) \(\gamma _{sdR}^{oi}(\Gamma )\le n-1,\) and we characterize extremal trees attaining this bound.
Similar content being viewed by others
References
Abdollahzadeh Ahangar, H., Amjadi, J., Atapour, M., Chellali, M., Sheikholeslami, S.M.: Double Roman trees. ARS Combin. 145, 173–183 (2019)
AbdollahzadehAhangar, H., Amjadi, J., Chellali, M., Nazari-Moghaddam, S., Sheikholeslami, S.M.: Trees with double Roman domination number twice the domination number plus two. Iran. J. Sci. Technol. Trans. A Sci. 43, 1081–1088 (2019)
Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: Signed double Roman domination in graphs. Discrete Appl. Math. 257, 1–11 (2019)
Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: Signed double Roman domination of graphs. Filomat 33, 121–134 (2019)
Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: On the double Roman domination in graphs. Discrete Appl. Math. 232, 1–7 (2017)
Amjadi, J., Nazari-Moghaddam, S., Sheikholeslami, S.M., Volkmann, L.: An upper bound on the double Roman domination number. J. Comb. Optim. 36, 81–89 (2018)
Amjadi, J., Yang, H., Nazari-Moghaddam, S., Sheikholeslami, S.M., Shao, Z.: Signed double Roman \(k\)-domination in graphs. Australas. J. Combin. 72, 82–105 (2018)
Anu, V., Aparna Lakshmanan, S.: Double Roman domination number. Discrete Appl. Math. 244, 198–201 (2018)
Beeler, R.A., Haynes, T.W., Hedetniemi, S.T.: Double Roman domination. Discrete Appl. Math. 211, 23–29 (2016)
Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: Roman domination in graphs. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Topics in Domination in Graphs. Springer, Berlin/Heidelberg (2020)
Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: Varieties of Roman domination. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Structures of Domination in Graphs. Springer, Berlin/Heidelberg (2021)
Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: Varieties of Roman domination II. AKCE J. Graphs Combin. 17, 966–984 (2020)
Chellali, M., Jafari Rad, N., Sheikholeslami, S.M., Volkmann, L.: A survey on Roman domination parameters in directed graphs. J. Combin. Math. Combin. Comput. to appear
Shahbazi, L., Abdollahzadeh Ahangar, H., Khoeilar, R., Sheikholeslami, S.M.: Bounds on signed total double Roman domination. Commun. Comb. Optim. 5, 191–206 (2020)
Volkmann, L.: The double Roman domatic number of a graph. J. Combin. Math. Combin. Comput. 104, 205–215 (2018)
Volkmann, L.: Double Roman domination and domatic numbers of graphs. Commun. Comb. Optim. 3, 71–77 (2018)
Yang, H., Wu, P., Nazari-Moghaddam, S., Sheikholeslami, S.M., Zhang, X., Shao, Z., Tang, Y.Y.: Bounds for signed double Roman \(k\)-domination in trees. RAIRO—Oper. Res. 53, 627–643 (2019)
Yue, J., Wei, M., Li, M., Liu, G.: On the double Roman domination of graphs. Appl. Math. Comput. 338, 669–675 (2018)
Zhang, X., Li, Z., Jiang, H., Shao, Z.: Double Roman domination in trees. Inform. Process. Lett. 134, 31–34 (2018)
Acknowledgements
The authors are deeply tankful to the reviewers for their valuable suggestions to improve the quality of this manuscript. H. Abdollahzadeh Ahangar was supported by the Babol Noshirvani University of Technology under research grant number BNUT/385001/00.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Abdollahzadeh Ahangar, H., Pour, F.N., Chellali, M. et al. Outer independent signed double Roman domination. J. Appl. Math. Comput. 68, 705–720 (2022). https://doi.org/10.1007/s12190-021-01535-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-021-01535-8
Keywords
- Double Roman dominating function
- Signed double Roman domination number
- Outer independent signed double Roman dominating function
- Outer independent signed double Roman domination number