Solving two generalized nonlinear matrix equations | Journal of Applied Mathematics and Computing Skip to main content
Log in

Solving two generalized nonlinear matrix equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the numerical solutions of two generalized nonlinear matrix equations. Newton’s method is applied to compute one of the generalized nonlinear matrix equations and a generalized Stein equation is obtained, then we adapt the generalized Smith method to find the maximal Hermitian positive definite solution. Furthermore, we consider the properties of the solution for the generalized nonlinear matrix equation. Newton’s method is also applied to the other generalized nonlinear matrix equation to find the minimal Hermitian positive definite solution. Finally, two numerical examples are presented to illustrate the effectiveness of the theoretical results and the convergence behaviour of the considered methods for two generalized nonlinear matrix equations, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, W.N., Kleindorfer, G.B., Kleindorfer, M.B., Woodroofe, M.B.: Consistent estimates of the parameters of a linear systems. Ann. Math. Stat. 40, 2064–2075 (1969)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, W.N., Morley, T.D., Trapp, G.E.: The cascade limit, the shorted operator and quadratic optimal control. In: Byrnes, C.I., Martin, C.F., Saeks, R.E. (eds.) Linear Circuits, Systems and Signal Processsing: Theory and Application, pp. 3–7. North-Holland, New York (1988)

    Google Scholar 

  3. Anderson, W.N., Morley, T.D., Trapp, G.E.: Positive solutions to \(X = A - BX^{-1}B^*\). Lin. Alg. Appl. 134, 53–62 (1990)

    MATH  Google Scholar 

  4. Bini, D.A., Latouche, G., Meini, B.: Solving nonlinear matrix equations arising in tree-like stochastic process. Lin. Alg. Appl. 366, 39–64 (2003)

    MATH  Google Scholar 

  5. Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving PoissonÕs equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    MathSciNet  MATH  Google Scholar 

  6. Bucy, R.S.: A priori bounds for the Riccati equation. In: proceedings of the Berkley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory, University of California Press, Berkeley, pp. 645–656 (1972)

  7. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Chu, E.K.-W., Huang, T.M., Lin, W.-W., Wu, C.-T.: Palindromic eigenvalue problems: a brief survey. Taiwan. J. Math. 14, 743–779 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Donoghue Jr., W.F.: Monotone Matrix Functions and Analytic Continuation. Springer, Berlin (1974)

    MATH  Google Scholar 

  10. Duan, X., Li, C., Liao, A.: Solutions and perturbation analysis for the nonlinear matrix equation \(X + \sum _{i=1}^m A_i^* X^{-1} A_i = I\). Appl. Math. Comput. 218, 4458–4466 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Duan, X.F., Liao, A.P., Tang, B.: On the nonlinear matrix equation \(X - {i=1}^m A_i^* X^{-1} A_i = Q\). Lin. Alg. Appl. 429, 110–121 (2008)

    Google Scholar 

  12. El-sayed, S.M., Ran, A.C.M.: On an iteration method for solving a class of nonlinear matrix equations. SIAM J. Matrix Anal. Appl. 23, 632–645 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Engwerda, J.C.: On the existence of a positive definite solution of the matrix equation \(X + A^\top X^{-1} A = I\). Lin. Alg. Appl. 194, 91–108 (1993)

    MATH  Google Scholar 

  14. Fan, H.Y., weng, P.C.-Y., chu, E.K.-W.: Numerical solution to generalized Lyapunov, Stein and rational Riccati equations in stochastic control. Numer. Algor. 71, 245–272 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Freiling, G., Hochhaus, A.: Properties of the solutions of rational matrix difference equations. Comput. Math. Appl. 45, 1137–1154 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Guo, C.-B., Kuo, Y.-C., lin, W.-W.: Complex symmetric stabilizing solution of the matrix equation \(X+A^\top X^{-1} A = Q\). Lin. Alg. Appl. 435, 1187–1192 (2011)

    MATH  Google Scholar 

  17. Guo, C.-H., Kuo, Y.-C., Lin, W.-W.: On a nonlinear matrix equation arising in nano research. SIAM Matrix Anal. Appl. 33, 235–262 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Guo, C.-H., Kuo, Y.-C., Lin, W.-W.: Numerical solution of nonlinear matrix equations arising from GreenÕs function calculations in nano research. J. Comput. Appl. Math. 236, 4166–4180 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Guo, C.-H., Lancaster, P.: Iterative solution of two matrix equations. Math. Comp. 68, 1589–1603 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Guo, C.-H., Lin, W.-W.: The matrix equation \(X+A^\top X^{-1} A = Q\) and its application in nano research. SIAM J. Sci. Comput. 32, 3020–3038 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Hasanov, V.I.: Notes on two perturbation estimates of the extreme solutions to the equations \(X \pm A^* X^{-1} A = Q\). Appl. Math. Comp. 216, 1355–1362 (2010)

    MATH  Google Scholar 

  22. Hasanov, V.I., Hakkaev, S.A.: Convergence analysis of some iterative methods for a nonlinear matrix equation. Comput. Math. Appl. 72, 1164–1176 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Hasanov, V.I., Ivanov, I.G.: On two perturbation estimates of the extreme solutions to the matrix equations \(X \pm A^* X^{-1} A = Q\). Lin. Alg. Appl. 413, 81–92 (2006)

    MATH  Google Scholar 

  24. He, Y., Long, J.: On the Hermitian positive definite solution of the nonlinear matrix equation \(X + \sum _{i=1}^m A_i^* X^{-1} A_i = I\). Appl. Math. Comput. 216, 3480–3485 (2010)

    MathSciNet  Google Scholar 

  25. Huang, B.-H., Ma, C.-F.: Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. Numer. Algor. 79, 153–178 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Liu, A., Chen, G.: On the Hermitian positive definite solutions of nonlinear matrix equation \(X^s +A^* X^{-t_1} A+B^* X^{-t_2} B = Q\), Math. Prob. Eng., Article ID 163585 (2011)

  27. Long, J., Hu, X., Zhang, I.: On the Hermitian positive definite solution of the matrix equation \(X + A^* X^{-1} A + B^* X^{-1} B = I\). Bull. Braz. Math. Soc. 39, 371–386 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Löwner, K.: Uber monotone Matrix funktionen. Math. Z. 38, 177–216 (1934)

    MathSciNet  MATH  Google Scholar 

  29. Mathworks, MATLAB User’s Guide, (2013)

  30. Meini, B.: Efficient computation of the extreme solutions of \(X + A^* X^{-1} A = Q\) and \(X - A^* X^{-1} A = Q\). Math. Comput. 71, 1189–1204 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Meini, B.: Nonlinear matrix equations and structured linear algebra. Lin. Alg. Appl. 413, 440–457 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Ouellette, D.V.: Schur complements and statistics. Lin. Alg. Appl. 36, 187–295 (1981)

    MathSciNet  MATH  Google Scholar 

  33. Popchev, I., Petkov, P., Konstantinov, M., Angelova, V.: Condition numbers for the matrix equation \(X+A^* X^{-1} A+B^* X^{-1} B = I\). Comptes Rendus de L’Academie Bulgare des Sciences 64, 1679–1688 (2011)

    MATH  Google Scholar 

  34. Popchev, I., Petkov, P., Konstantinov, M., Angelova, V.: Perturbation bounds for the nonlinear matrix equation \(X+A^* X^{-1} A+B^* X^{-1} B = I\). Large-Scale Sci. Comput. 7116(LNCS), 155–162 (2012)

    MATH  Google Scholar 

  35. Pusz, W., Woronowitz, S.I.: Functional calculus for sequilinear forms and purification map. Rep. Math. Phys. 8, 159–170 (1975)

    Google Scholar 

  36. Ran, I.C.M., Reurings, M.C.B.: On the nonlinear matrix equation \(X+A^* mathcal F (X)A = Q\), solution and perturbation theory. Lin. Alg. Appl. 346, 15–26 (2002)

    MATH  Google Scholar 

  37. Ran, I.C.M., Reurings, M.C.B.: A nonlinear matrix equation connected to interpolation theory. Lin. Alg. Appl. 379, 289–302 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Reurings, M.C.B., Ran, I.C.M.: The symmetric linear matrix equation. Electron. J. Linear Algebra 9, 93–107 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Sun, J.-G., Xu, S.-F.: Perturbation analysis of the maximal solution of the matrix equation \(X + A^* X^{-1} A = P\), II. Lin. Alg. Appl. 362, 211–228 (2003)

    MATH  Google Scholar 

  40. Vaezzadeh, S., Vaezpour, S., Vvsp, R., Park, C.: The iterative methods for solving nonlinear matrix equation \(X+A^* X^{-1} A+B^* X^{-1} B = Q\). Adv. Differ. Equ. 229, 520–527 (2013)

    MATH  Google Scholar 

  41. Xu, S.-F.: Perturbation analysis of the maximal solution of the matrix equation \(X + A^* X^{-1} A = P\). Lin. Alg. Appl. 336, 61–70 (2001)

    MATH  Google Scholar 

  42. Yin, X., Fang, L.: Perturbation analysis for the positive definite solution of the nonlinear matrix equation \(X-\sum _{i=1}^{m}A_{i}^{*}X^{-1}A_{i}=Q\). J. Appl. Math. Comput. 43, 199–211 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Zabezyk, J.: Remarks on the control of discrete time distributed parameter systems. SIAM J. Control. 12, 721–735 (1974)

    MathSciNet  Google Scholar 

  44. Zhan, X.: Computing the extremal positive definite solution of a matrix equation. SIAM J. Sci. Comput. 247, 337–345 (1996)

    MathSciNet  Google Scholar 

  45. Zhan, X., Xie, J.: On the matrix equation \(X + A^\top X^{-1} A = I\). Lin. Alg. Appl. 147, 337–342 (1996)

    MATH  Google Scholar 

  46. Zhou, B., Lam, J., Duan, G.-R.: On Smith-type iterative algorithms for the Stein matrix equation. Appl. Maths. Lett. 22, 1038–1044 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by (a) Career Development Award of Academia Sinica (Taiwan) Grant Number 103-CDA-M04 and (b) Ministry of Science and Technology (Taiwan) Grant Number 103-2811-M-001-166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Chang-Yi Weng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, P.CY. Solving two generalized nonlinear matrix equations. J. Appl. Math. Comput. 66, 543–559 (2021). https://doi.org/10.1007/s12190-020-01448-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01448-y

Keywords

Mathematics Subject Classification

Navigation