Abstract
In this paper, we consider the numerical solutions of two generalized nonlinear matrix equations. Newton’s method is applied to compute one of the generalized nonlinear matrix equations and a generalized Stein equation is obtained, then we adapt the generalized Smith method to find the maximal Hermitian positive definite solution. Furthermore, we consider the properties of the solution for the generalized nonlinear matrix equation. Newton’s method is also applied to the other generalized nonlinear matrix equation to find the minimal Hermitian positive definite solution. Finally, two numerical examples are presented to illustrate the effectiveness of the theoretical results and the convergence behaviour of the considered methods for two generalized nonlinear matrix equations, respectively.
Similar content being viewed by others
References
Anderson, W.N., Kleindorfer, G.B., Kleindorfer, M.B., Woodroofe, M.B.: Consistent estimates of the parameters of a linear systems. Ann. Math. Stat. 40, 2064–2075 (1969)
Anderson, W.N., Morley, T.D., Trapp, G.E.: The cascade limit, the shorted operator and quadratic optimal control. In: Byrnes, C.I., Martin, C.F., Saeks, R.E. (eds.) Linear Circuits, Systems and Signal Processsing: Theory and Application, pp. 3–7. North-Holland, New York (1988)
Anderson, W.N., Morley, T.D., Trapp, G.E.: Positive solutions to \(X = A - BX^{-1}B^*\). Lin. Alg. Appl. 134, 53–62 (1990)
Bini, D.A., Latouche, G., Meini, B.: Solving nonlinear matrix equations arising in tree-like stochastic process. Lin. Alg. Appl. 366, 39–64 (2003)
Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving PoissonÕs equations. SIAM J. Numer. Anal. 7, 627–656 (1970)
Bucy, R.S.: A priori bounds for the Riccati equation. In: proceedings of the Berkley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory, University of California Press, Berkeley, pp. 645–656 (1972)
Carlen, E.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)
Chu, E.K.-W., Huang, T.M., Lin, W.-W., Wu, C.-T.: Palindromic eigenvalue problems: a brief survey. Taiwan. J. Math. 14, 743–779 (2010)
Donoghue Jr., W.F.: Monotone Matrix Functions and Analytic Continuation. Springer, Berlin (1974)
Duan, X., Li, C., Liao, A.: Solutions and perturbation analysis for the nonlinear matrix equation \(X + \sum _{i=1}^m A_i^* X^{-1} A_i = I\). Appl. Math. Comput. 218, 4458–4466 (2011)
Duan, X.F., Liao, A.P., Tang, B.: On the nonlinear matrix equation \(X - {i=1}^m A_i^* X^{-1} A_i = Q\). Lin. Alg. Appl. 429, 110–121 (2008)
El-sayed, S.M., Ran, A.C.M.: On an iteration method for solving a class of nonlinear matrix equations. SIAM J. Matrix Anal. Appl. 23, 632–645 (2001)
Engwerda, J.C.: On the existence of a positive definite solution of the matrix equation \(X + A^\top X^{-1} A = I\). Lin. Alg. Appl. 194, 91–108 (1993)
Fan, H.Y., weng, P.C.-Y., chu, E.K.-W.: Numerical solution to generalized Lyapunov, Stein and rational Riccati equations in stochastic control. Numer. Algor. 71, 245–272 (2016)
Freiling, G., Hochhaus, A.: Properties of the solutions of rational matrix difference equations. Comput. Math. Appl. 45, 1137–1154 (2003)
Guo, C.-B., Kuo, Y.-C., lin, W.-W.: Complex symmetric stabilizing solution of the matrix equation \(X+A^\top X^{-1} A = Q\). Lin. Alg. Appl. 435, 1187–1192 (2011)
Guo, C.-H., Kuo, Y.-C., Lin, W.-W.: On a nonlinear matrix equation arising in nano research. SIAM Matrix Anal. Appl. 33, 235–262 (2012)
Guo, C.-H., Kuo, Y.-C., Lin, W.-W.: Numerical solution of nonlinear matrix equations arising from GreenÕs function calculations in nano research. J. Comput. Appl. Math. 236, 4166–4180 (2012)
Guo, C.-H., Lancaster, P.: Iterative solution of two matrix equations. Math. Comp. 68, 1589–1603 (1999)
Guo, C.-H., Lin, W.-W.: The matrix equation \(X+A^\top X^{-1} A = Q\) and its application in nano research. SIAM J. Sci. Comput. 32, 3020–3038 (2010)
Hasanov, V.I.: Notes on two perturbation estimates of the extreme solutions to the equations \(X \pm A^* X^{-1} A = Q\). Appl. Math. Comp. 216, 1355–1362 (2010)
Hasanov, V.I., Hakkaev, S.A.: Convergence analysis of some iterative methods for a nonlinear matrix equation. Comput. Math. Appl. 72, 1164–1176 (2016)
Hasanov, V.I., Ivanov, I.G.: On two perturbation estimates of the extreme solutions to the matrix equations \(X \pm A^* X^{-1} A = Q\). Lin. Alg. Appl. 413, 81–92 (2006)
He, Y., Long, J.: On the Hermitian positive definite solution of the nonlinear matrix equation \(X + \sum _{i=1}^m A_i^* X^{-1} A_i = I\). Appl. Math. Comput. 216, 3480–3485 (2010)
Huang, B.-H., Ma, C.-F.: Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. Numer. Algor. 79, 153–178 (2018)
Liu, A., Chen, G.: On the Hermitian positive definite solutions of nonlinear matrix equation \(X^s +A^* X^{-t_1} A+B^* X^{-t_2} B = Q\), Math. Prob. Eng., Article ID 163585 (2011)
Long, J., Hu, X., Zhang, I.: On the Hermitian positive definite solution of the matrix equation \(X + A^* X^{-1} A + B^* X^{-1} B = I\). Bull. Braz. Math. Soc. 39, 371–386 (2008)
Löwner, K.: Uber monotone Matrix funktionen. Math. Z. 38, 177–216 (1934)
Mathworks, MATLAB User’s Guide, (2013)
Meini, B.: Efficient computation of the extreme solutions of \(X + A^* X^{-1} A = Q\) and \(X - A^* X^{-1} A = Q\). Math. Comput. 71, 1189–1204 (2002)
Meini, B.: Nonlinear matrix equations and structured linear algebra. Lin. Alg. Appl. 413, 440–457 (2006)
Ouellette, D.V.: Schur complements and statistics. Lin. Alg. Appl. 36, 187–295 (1981)
Popchev, I., Petkov, P., Konstantinov, M., Angelova, V.: Condition numbers for the matrix equation \(X+A^* X^{-1} A+B^* X^{-1} B = I\). Comptes Rendus de L’Academie Bulgare des Sciences 64, 1679–1688 (2011)
Popchev, I., Petkov, P., Konstantinov, M., Angelova, V.: Perturbation bounds for the nonlinear matrix equation \(X+A^* X^{-1} A+B^* X^{-1} B = I\). Large-Scale Sci. Comput. 7116(LNCS), 155–162 (2012)
Pusz, W., Woronowitz, S.I.: Functional calculus for sequilinear forms and purification map. Rep. Math. Phys. 8, 159–170 (1975)
Ran, I.C.M., Reurings, M.C.B.: On the nonlinear matrix equation \(X+A^* mathcal F (X)A = Q\), solution and perturbation theory. Lin. Alg. Appl. 346, 15–26 (2002)
Ran, I.C.M., Reurings, M.C.B.: A nonlinear matrix equation connected to interpolation theory. Lin. Alg. Appl. 379, 289–302 (2004)
Reurings, M.C.B., Ran, I.C.M.: The symmetric linear matrix equation. Electron. J. Linear Algebra 9, 93–107 (2002)
Sun, J.-G., Xu, S.-F.: Perturbation analysis of the maximal solution of the matrix equation \(X + A^* X^{-1} A = P\), II. Lin. Alg. Appl. 362, 211–228 (2003)
Vaezzadeh, S., Vaezpour, S., Vvsp, R., Park, C.: The iterative methods for solving nonlinear matrix equation \(X+A^* X^{-1} A+B^* X^{-1} B = Q\). Adv. Differ. Equ. 229, 520–527 (2013)
Xu, S.-F.: Perturbation analysis of the maximal solution of the matrix equation \(X + A^* X^{-1} A = P\). Lin. Alg. Appl. 336, 61–70 (2001)
Yin, X., Fang, L.: Perturbation analysis for the positive definite solution of the nonlinear matrix equation \(X-\sum _{i=1}^{m}A_{i}^{*}X^{-1}A_{i}=Q\). J. Appl. Math. Comput. 43, 199–211 (2013)
Zabezyk, J.: Remarks on the control of discrete time distributed parameter systems. SIAM J. Control. 12, 721–735 (1974)
Zhan, X.: Computing the extremal positive definite solution of a matrix equation. SIAM J. Sci. Comput. 247, 337–345 (1996)
Zhan, X., Xie, J.: On the matrix equation \(X + A^\top X^{-1} A = I\). Lin. Alg. Appl. 147, 337–342 (1996)
Zhou, B., Lam, J., Duan, G.-R.: On Smith-type iterative algorithms for the Stein matrix equation. Appl. Maths. Lett. 22, 1038–1044 (2009)
Acknowledgements
This work was supported by (a) Career Development Award of Academia Sinica (Taiwan) Grant Number 103-CDA-M04 and (b) Ministry of Science and Technology (Taiwan) Grant Number 103-2811-M-001-166.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Weng, P.CY. Solving two generalized nonlinear matrix equations. J. Appl. Math. Comput. 66, 543–559 (2021). https://doi.org/10.1007/s12190-020-01448-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-020-01448-y
Keywords
- Generalized nonlinear matrix equations
- Newton’s method
- Maximal and minimal Hermitian positive definite solutions
- Generalized Smith method
- Perturbation analysis