Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model | Journal of Applied Mathematics and Computing Skip to main content
Log in

Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The all-at-once system arising from fractional mobile/immobile advection–diffusion equations is studied. Firstly, the finite difference method with L1 formula is employed to discretize it. The resulting implicit scheme is a time-stepping scheme, which is not suitable for parallel computing. Based on this scheme, an all-at-once system is established, which will be suitable for parallel computing. Secondly, according to the block lower triangular Toeplitz structure of the all-at-once system, both the block bi-diagonal preconditioner and block stair preconditioner are designed. Finally, numerical examples are presented to show the performances of the proposed preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banjai, L., Peterseim, D.: Parallel multistep methods for linear evolution problems. IMA J. Numer. Anal. 32, 1217–1240 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Chen, H., Zhang, T., Lv, W.: Block preconditioning strategies for time-space fractional diffusion equations. Appl. Math. Comput. 337, 41–53 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition Methods, pp. 69–114. Springer, Berlin (2015)

    Google Scholar 

  5. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations. J. Sci. Comput. 69, 506–531 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Gorial, I.I.: A reliable algorithm for multi-dimensional mobile/immobile advection–dispersion equation with variable order fractional. Indian J. Sci. Technol. 11, 1–9 (2018). https://doi.org/10.17485/ijst/2018/v11i30/127486

    Article  Google Scholar 

  8. Gu, X.M., Huang, T.Z., Ji, C.C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection–diffusion equation. J. Sci. Comput. 72, 957–985 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Gu, X.M., Huang, T.Z., Zhao, X.L., Li, H.B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Gu, X.M., Wu, S.L.: A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel. J. Comput. Phys. 417, 109576 (2020). https://doi.org/10.1016/j.jcp.2020.109576

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, Y.C., Lei, S.L.: A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations. Numer. Algorithms 76, 605–616 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Jian, H.Y., Huang, T.Z., Zhao, X.L., Zhao, Y.L.: A fast implicit difference scheme for a new class of time distributed-order and space fractional diffusion equations with variable coefficients. Adv. Differ. Equ. 2018, 205 (2018). https://doi.org/10.1186/s13662-018-1655-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Ke, R., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Li, H.B., Huang, T.Z., Zhang, Y., Liu, X.P., Li, H.: On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors. Math. Comput. Simul. 79, 2135–2147 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Li, M., Huang, C., Ming, W.: A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numer. Algorithms 83, 99–124 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74, 499–525 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Li, M., Huang, C., Zhao, Y.: Fast conservative numerical algorithm for the coupled fractional Klein–Gordon–Schrödinger equation. Numer. Algorithms 84, 1081–1119 (2019)

    MATH  Google Scholar 

  21. Li, M., Shi, D., Wang, J., Ming, W.: Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein–Gordon–Schrödinger equation. Appl. Numer. Math. 142, 47–63 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Li, M., Zhao, J., Huang, C., Chen, S.: Nonconforming virtual element method for the time fractional reaction–subdiffusion equation with non-smooth data. J. Sci. Comput. 81, 1823–1859 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Li, M., Zhao, Y.L.: A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator. Appl. Math. Comput. 338, 758–773 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Lu, X., Pang, H.K., Sun, H.W.: Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer. Linear Algebr. Appl. 22, 866–882 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Lu, X., Pang, H.K., Sun, H.W., Vong, S.W.: Approximate inversion method for time-fractional subdiffusion equations. Numer. Linear Algebr. Appl. 25, e2132 (2018). https://doi.org/10.1002/nla.2132

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo, W.H., Huang, T.Z., Wu, G.C., Gu, X.M.: Quadratic spline collocation method for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252–265 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Ma, J.: A new finite element analysis for inhomogeneous boundary-value problems of space fractional differential equations. J. Sci. Comput. 70, 342–354 (2017)

    MathSciNet  MATH  Google Scholar 

  30. McDonald, E., Pestana, J., Wathen, A.: Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations. SIAM J. Sci. Comput. 40, A1012–A1033 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Murphy, M., Golub, G., Wathen, A.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  33. Pourbashash, H., Baleanu, D., Al Qurashi, M.M.: On solving fractional mobile/immobile equation. Adv. Mech. Eng. 9, 1–12 (2017)

    Google Scholar 

  34. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  35. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1296 (2003). https://doi.org/10.1029/2003WR002141

  36. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Varga, R.S.: Geršgorin and His Circles. Springer, Berlin (2004)

    MATH  Google Scholar 

  38. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Wu, L., Zhai, S.: A new high order ADI numerical difference formula for time-fractional convection–diffusion equation. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.124564

    Article  Google Scholar 

  40. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Yu, B., Jiang, X., Qi, H.: Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection–diffusion model. Int. J. Comput. Math. 95, 1131–1150 (2018)

    MathSciNet  Google Scholar 

  42. Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Zhai, S., Weng, Z., Feng, X., Yuan, J.: Investigations on several high-order ADI methods for time-space fractional diffusion equation. Numer. Algorithms 82, 69–106 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Google Scholar 

  46. Zhao, M., Wang, H., Cheng, A.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations with fractional derivative boundary conditions. J. Sci. Comput. 74, 1009–1033 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, Y.L., Zhu, P.Y., Gu, X.M., Zhao, X.L., Jian, H.Y.: A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. J. Sci. Comput. 83, 10 (2020). https://doi.org/10.1007/s10915-020-01193-1

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, Y.L., Zhu, P.Y., Luo, W.H.: A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term. Appl. Math. Comput. 336, 231–248 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous referees for their valuable comments and detailed revision suggestions that have greatly improved the quality of this paper. This research is supported by the National Natural Science Foundation of China (Nos. 11801463 and 11701522), the Applied Basic Research Program of Sichuan Province (No. 2020YJ0007) and the Fundamental Research Funds for the Central Universities (No. JBK1902028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ming Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YL., Gu, XM., Li, M. et al. Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model. J. Appl. Math. Comput. 65, 669–691 (2021). https://doi.org/10.1007/s12190-020-01410-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01410-y

Keywords

Mathematics Subject Classification

Navigation