Visually-driven parallel solving of multi-objective land-use allocation problems: a case study in Chelan, Washington | Earth Science Informatics Skip to main content

Advertisement

Log in

Visually-driven parallel solving of multi-objective land-use allocation problems: a case study in Chelan, Washington

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Many geospatial optimization models can be formulated as multi-objective linear integer programming (LIP) models. Because geospatial optimization models are much more complicated than regular LIP models, solving large-scale geospatial LIP models may be facilitated through parallel computing. In this paper, we explore the possibility of applying geovisual analytics to promote the search of exact optimal solutions in parallel computing environments. By integrating the potential of visual analytics and high-performance computing, we developed a suite of interactive geovisual tools to dynamically steer the optimization search in an interactive manner. Using a sustainable land use design as a case study, we demonstrate the potential of our approach in solving multi-objective land use allocation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aerts J, Eistinger E, Heuvelink G, Stewart TJ (2003) Using linear integer programming for multi-site land-use allocation. Geogr Anal 35:148–169

    Article  Google Scholar 

  • Aldasoro U, Garín A, Merino M, Pérez G (2012) MPI parallel programming of mixed integer optimization problemusing CPLEX with COIN-OR. Technical Report, https://addi.ehu.es/handle/10810/7274

  • Andrienko G, Andrienko N, Jankowski P, Keim D, Kraak M-J, MacEachren A, Wrobel S (2007) Geovisual analytics for spatial decision support: setting the research agenda. Int J Geogr Inf Sci 21(8):839–857

    Article  Google Scholar 

  • Applegate DL, Bixby RE, Chvatal V, Cook WJ (2006) The traveling salesman problem: a computational study. Princeton University Press, Princeton

    Google Scholar 

  • Arciniegas G, Janssen R, Omtzigt S (2011) Map-based multicriteria analysis to support interactive land use allocation. Int J Geogr Inf Sci 25(12):1931–1947

    Article  Google Scholar 

  • Benichou M, Gauthier JM, Girodet P, Hehntges G, Ribiere G, Vincent O (1971) Experiments in mixed integer linear programming. Math Program 1:76–94

    Article  Google Scholar 

  • Beru R, Burdet C (1974) Branch and bound experiments in zero-one programming. Math Program 2:1–50

    Google Scholar 

  • Church RL, Murray AT (2008) Business site selection, location analysis and GIS. Wiley, Hoboken

    Book  Google Scholar 

  • Crainic TG, Le Cun B, Roucairol C (2006) Parallel branch-and-bound algorithms. In: Talbi E-G (ed) Parallel combinatorial optimization. Wiley, Hoboken

    Google Scholar 

  • Gorguner M (1997) VBnB: Visual Branch and Bound. Thesis (MS). Brown University

  • Homeister D (1996) Efficient implementations of parallel branch and cut. In Proceedings of the Fifth SIAM Conference on Optimization

  • International Business Machines Corp. (1991) Optimization Subroutine Library, Guide and Reference, Release 2. Document SC23-0519-02, IBM Armonk NY

  • Jankowski P, Fraley G (2009) A geovisual analytics approach to spatial multiple objective optimization. In 24th International Cartographic Conference - The World’s GeoSpatial Solutions, pp 15–21

  • Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 8(1):1–8

    Article  Google Scholar 

  • Keim DA, Mansmann F, Schneidewind J, Thomas J, Hartmut Z et al (2008) Visual analytics: scope and challenges. In: Simoff SJ (ed) Visual data mining. Springer-Verlag, LNCS 4404, Berlin, pp 76–90

    Chapter  Google Scholar 

  • Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28:497–520

    Article  Google Scholar 

  • Ligmann-Zielinska A, Church RL, Jankowski P (2008) Geospatial optimization as a generative technique for sustainable multiobjective land-use allocation. Int J Geogr Inf Sci 22(6):601–622

    Article  Google Scholar 

  • Linderoth JT (1998) Topics in parallel integer optimization. Dissertation (PhD). Georgia Institute of Technology

  • MacEachren AM (2004) Geovisualization for knowledge construction and decision support. IEEE Comput Graph Appl 24(1):13–17

    Article  Google Scholar 

  • Malczewski J (2004) GIS-based land-use suitability analysis: a critical overview. Process Plan 62:3–65

    Article  Google Scholar 

  • Özaltın OY, Hunsaker B, Ralphs TK (2007) Visualizing Branch-and bound Algorithmst [online]. Available from: http://www.optimization-online.org/DB_FILE/2007/09/1785.pdf. Accessed 11 Jan 2015

  • Padberg M, Rinaldi G (1991) A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev 33:60–100

    Article  Google Scholar 

  • Ralphs TK, Ládanyi L, Saltzman MJ (2004) A library hierarchy for implementing scalable parallel search algorithms. J Supercomput 28:215–234

    Article  Google Scholar 

  • Tong D, Murray AT (2012) Spatial optimization in geography. Ann Assoc Am Geogr 102(6):1290–1309

    Article  Google Scholar 

  • Ward DP, Murray AT, Phinn SR (2003) Integrating spatial optimization and cellular automata for evaluating urban change. Ann Reg Sci 37:131–148

    Article  Google Scholar 

  • Xiao N, Bennett DA, Armstrong MP (2007) Interactive evolutionary approaches to multiobjective spatial decision making: a synthetic review. Comput Environ Urban Syst 31:232–252

    Article  Google Scholar 

  • Xu Y (2007) Scalable algorithms for parallel tree search. Dissertation (PhD). Lehigh University

  • Xu Y, Ralphs TK, Ladányi L, Saltzman MJ (2009) Computational experience with a software framework for parallel integer programming. INFORMS J Comput 21(3):383–397

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant [Nos. 41023001, 41271400, 40901190]. We are grateful to Li Zheng, Zhuoqun Zeng and Shuai Ma at Wuhan University, who contributed to developing the program to visualize parallel computational load.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Hua, G. & Ligmann-Zielinska, A. Visually-driven parallel solving of multi-objective land-use allocation problems: a case study in Chelan, Washington. Earth Sci Inform 8, 809–825 (2015). https://doi.org/10.1007/s12145-015-0214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-015-0214-6

Keywords

Navigation