Abstract
We apply a newly developed inversion scheme for a gravimetric determination of the Moho depths. This scheme utilizes the system of observation equations, which relates the complete crust-stripped gravity disturbances (i.e., the gravity disturbances corrected for anomalous crustal density structures) with the (unknown) Moho depths by means of a linearized Fredholm integral equation of the first kind. A point-value discretization scheme is applied, in which the coefficients of a design matrix are calculated using the closed analytical formula for the integral kernel function. The a priori error model is not applied due to the lack of knowledge on the accuracy of crustal density structure model. Tikhonov’s regularization is applied to stabilize the ill-posed solution; the regularization matrix is the identity matrix and the regularization parameter is selected based on an optimal fitting of the gravimetric solution to the a priori seismic Moho model. This method is applied to determine the Moho depths regionally at the study area of the Tibetan plateau and Himalayas characterized by the world largest crustal thickness. A constant value of the crust-mantle density contrast of 485 kg m−3 is assumed in our numerical model. For this density contrast, the estimated maximum Moho depths in central Tibet exceed 80 km.









Similar content being viewed by others
References
Allègre CJ, Courtillot V, Tapponier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Schärer U, Marcoux J, Burg JP, Girardeau J, Armijo R, Garie C, Göpel C, Li T, Xiao X, Chang C, Li G (1984) Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307:17–22
Bagherbandi M (2012) A comparison of three gravity inversion methods for crustal thickness modelling in Tibet plateau. Asian J Earth Sci 43(1):89–97
Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS, Trans. AGU, 81, F897
Bilham R, Larson K, Freymueller J (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–64
Braitenberg C, Zadro M, Fang J, Wang Y, Hsu HT (2000a) Gravity inversion in Quinghai-Tibet plateau. Phys Chem Earth 25:381–386
Braitenberg C, Zadro M, Fang J, Wang Y, Hsu HT (2000b) The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. J Geodyn 30:489–505
Caporali A (1995) Gravity anomalies and the flexure of the lithosphere in the Karakoram, Pakistan. J Geophys Res 100:15075–15085
Caporali A (1998) Gravimetric constraints on the rheology of the Indian and Tarim plates in the Karakoram continent collision zone. J Asian Earth Sci 16:313–321
Caporali A (2000) Buckling of the lithosphere in western Himalaya; constraints from gravity and topography data. J Geophys Res 105:3103–3113
Dewey JF, Cande S, Pitman WC (1989) Tectonic evolution of the Indian/Eurasia Collision Zone. Eclogae Geol Helv 82(3):717–734
Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356
Gao R, Lu Z, Li Q, Guan Y, Zhang J, He R, Huang L (2005) Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau. Episodes 28(4):263–273
Gladkikh V, Tenzer R (2011) A mathematical model of the global ocean saltwater density distribution. Pure Appl Geophys 169(1–2):249–257
Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560
Hirn A, Lepine JC, Jobert TG, Sapin M, Wittlinger G, Xu ZX, Gao EY, Wang XJ, Teng JW, Xiong SB, Pandey MR, Talte JM (1984) Crust structure and variability of the Himalayan border of Tibet. Nature 307(5946):23–25
Kind R, Ni J, Zhao W, Wu J, Yuan X, Zhao L, Sandvol E, Reeses C, Nabelek J, Hearn T (1996) Evidence from earthquake data for a partially molten crustal layer in Southern Tibet. Science 274:1692–1694
Kind R, Yuan X, Saul J, Nelson D, Sobolev SV, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U, Jiang M (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298:1219–1221
Lyon-Caen H, Molnar P (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J Geophys Res 88:8171–8191
Lyon-Caen H, Molnar P (1984) Gravity anomalies and the structure of western Tibet and the southern Tarim basin. Geophys Res Lett 11:1251–1254
Martinec Z (1998) Boundary value problems for gravimetric determination of a precise geoid. Lecture Notes in Earth Science, 73, Springer-Verlag
Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Abstract, GGHS2012, Venice
Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia, effects of a continental collision. Science 189:419–426
Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162
Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J (1996) Partially molten middle crust beneath southern Tibet synthesis of Project INDEPTH results. Science 274:1684–1688
Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the nNext EGM. Presented at the 1st International symposium of the International gravity service 2006, August 28- September 1, Istanbul, Turkey
Rai SS, Priestley K, Gaur VK, Mitra S, Singh MP, Searle M (2006) Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys Res Lett 33, L15308
Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S, Bilham R (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435:1222–1225
Shin YH, Xu H, Braitenberg C, Fang J, Wang Y (2007) Moho undulations beneath Tibet from GRACE-integrated gravity data. Geophys J Int 170:971–985
Sjöberg LE (2013) On the isotactic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys J Int. doi:10.1093/gji/ggt008
Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys 58:1–24
Teng JW, Yin ZX, Xu X, Wnag T, Lu DY (1983) Structure of the crust and upper mantle pattern and velocity distributional characteristics in the Northern Himalayan mountain region. Acta Geophys Sin 26(6):525–540
Tenzer R, Chen W (2013) Expressions for the global gravimetric Moho modeling in spectral domain. Comput Geosci Pure Appl Geophys. doi:10.1007/s00024-013-0740-4
Tenzer R, Hamayun, Vajda P (2009a) Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J Geophys Res 114(B):05408
Tenzer R, Hamayun, Vajda P (2009b) A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST2.0 Moho boundary. Contrib Geophys Geodesy 39(2):133–147
Tenzer R, Vajda P, Hamayun (2010a) A mathematical model of the bathymetry-generated external gravitational field. Contrib Geophys Geodesy 40(1):31–44
Tenzer R, Abdalla A, Vajda P, Hamayun (2010b) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geodesy 40(3):207–223
Tenzer R, Novák P, Gladkikh V (2011) On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud Geophys Geod 55(4):609–626
Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207
Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839
Tenzer R, Novák P, Gladkikh V (2012c) The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density. Mar Geod 35:198–220
Tenzer R, Hamayun, Novák P, Gladkikh V, Vajda P (2012d) Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl Geophys 169(9):1663–1678
Tenzer R, Bagherbandi M, Hwang C, Chang ETY (2013) Moho interface modeling beneath Himalayas, Tibet and central Siberia using GOCO02S and DTM2006.0. Special issue on geophysical and climate change studies in Tibet, Xinjiang, and Siberia from satellite geodesy. Terr Atmos Ocean Sci 24(4):581–590
Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1995) Numerical methods for the solution of Ill-posed problems. Kluwer, Dordrecht
Tilmann F, Ni J, INDEJPTH Seismic Team (2003) Seismic imaging of the down-welling Indian lithosphere beneath central Tibet. Science 300:1424–1427
Vajda P, Vaníček P, Novák P, Tenzer R, Ellmann A (2007) Secondary indirect effects in gravity anomaly data inversion or interpretation. J Geophys Res 112, B06411
Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge, 458 pp
Wittlinger G, Vergne J, Tapponnier P, Farra V, Poupinet G, Jiang M, Su H, Herquel G, Paul A (2004) Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet Sci Lett 221:117–130
Wu G, Xiao X, Li T (1991) Yadong to Golmud transect, Qinghai-Tibet plateau, China, Global Geoscience Transect 3, AGU, Publication No. 189 of the International Lithosphere Program, pp. 1–32 and supplementary foldout
Wu QJ, Zeng RS, Zhao WJ (2004) Dipping structure of upper mantle and continent-continent collision in Himalyas-Tibet Plateau. Sci China Ser D 34(10):919–925
Xiong SB, Teng JW, Yin ZX (1985) Research on the fine crustal structure of the northern Qilian-Hexi Corridor by deep seismic reflection. Chin J Geophys 38:29–35
Xu ZQ, Jiang M, Yang JS, Xue GQ, Su HP, Li HB, Cui JW, Wu CL, Liang FH (2004) Mantle structure of Qinghai-Tibet plateau: mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci Front 11(4):329–343
Young D (1971) Iterative solutions of large linear systems. Academic Press, New York
Zeng RS, Ding ZF, Wu QJ (1994) A review of the lithospheric structure in Tibetan plateau and constraints for dynamics. Acta Geophys Sin 37:99–116
Zeng RS, Teng JW, Li YK, Klemperer S, Yang LQ (2002) Crustal velocity structure and eastward escaping of crustal material in the southern Tibet. Sci China 32(10):793–798
Zhang ZJ, Li YK, Wang GJ, Teng JW, Klemperer S, Li JW, Gan JY, Chen Y (2001) E-W crustal structure under the northern Tibet revealed by wide-angle seismic profiles. Sci China Ser D 31(11):881–888
Zhang Z, Deng Y, Teng J, Wang C, Gao R, Chen Y, Fan W (2011) An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. J Asian Earth Sci 40:977–989
Zhao W-J, Nelson KD, Project INDEPTH Team (1993) Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 366:557–559
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: H. A. Babaie
Rights and permissions
About this article
Cite this article
Tenzer, R., Chen, W. Regional gravity inversion of crustal thickness beneath the Tibetan plateau. Earth Sci Inform 7, 265–276 (2014). https://doi.org/10.1007/s12145-014-0146-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12145-014-0146-6