Lower bounds on the maximum cross-correlations of 2-D quasi-complementary array sets | Cryptography and Communications Skip to main content
Log in

Lower bounds on the maximum cross-correlations of 2-D quasi-complementary array sets

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

For one-dimensional (1-D) sequences, many lower bounds on the maximum cross-correlations have been demonstrated. For example, bounds proposed by Welch, Levenstein, Liu et al., and others are the lower bounds on the maximum cross-correlations of aperiodic 1-D sequence sets or quasi-complementary sequence sets (QCSSs). However, in recent times, two-dimensional (2-D) arrays have emerged with promising applications in wireless communication, such as ultra wide-band (UWB), 2-D synchronization, massive multiple-input multiple-output (MIMO), 2-D multi-carrier code division multiple access (2D-MC-CDMA), etc. Although the construction of a 2-D quasi-complementary array set (QCAS) exists in literature, the lower bound on the maximum cross-correlation \(\delta _{max}\) of such a 2-D QCAS has not been reported previously. In this paper, we propose, for the first time lower bounds on the maximum cross-correlations of 2-D QCASs for both periodic and aperiodic cases. The existing lower bounds on the maximum cross-correlations of 1-D QCSSs and 1-D sequence sets can be deduced from the proposed lower bounds on the maximum cross-correlations of 2-D QCASs and 2-D array sets for certain cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golay, M.J.E.: Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Am. 41(7), 468–472 (1951)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45(7), 2397–2417 (1999)

    Article  MathSciNet  Google Scholar 

  3. Spasojevic, P., Georghiades, C.N.: Complementary sequences for ISI channel estimation. IEEE Trans. Inf. Theory 47(3), 1145–1152 (2001)

    Article  MathSciNet  Google Scholar 

  4. Tseng, C.-C., Liu, C.: Complementary sets of sequences. IEEE Trans. Inf. Theory 18(5), 644–652 (1972)

    Article  MathSciNet  Google Scholar 

  5. Adhikary, A.R., Majhi, S.: New constructions of complementary sets of sequences of lengths non-power-of-two. IEEE Commun. Lett. 23(7), 1119–1122 (2019)

    Article  Google Scholar 

  6. Chen, C.-Y.: A novel construction of complementary sets with flexible lengths based on Boolean functions. IEEE Commun. Lett. 22(2), 260–263 (2018)

    Article  ADS  Google Scholar 

  7. Suehiro, N., Hatori, M.: N-shift cross-orthogonal sequences. IEEE Trans. Inf. Theory 34(1), 143–146 (1988)

    Article  MathSciNet  Google Scholar 

  8. Rathinakumar, A., Chaturvedi, A.K.: Complete mutually orthogonal Golay complementary sets from Reed-Muller codes. IEEE Trans. Inf. Theory 54(3), 1339–1346 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chen, C.-Y., Wang, C.-H., Chao, C.-C.: Complete complementary codes and generalized Reed-Muller codes. IEEE Commun. Lett. 12(11), 849–851 (2008)

    Article  Google Scholar 

  10. Ma, D., Budišin, S., Wang, Z., Gong, G.: A new generalized paraunitary generator for complementary sets and complete complementary codes of size 2m. IEEE Signal Process. Lett. 26(1), 4–8 (2019)

    Article  ADS  Google Scholar 

  11. Das, S., Majhi, S., Liu, Z.: A novel class of complete complementary codes and their applications for APU matrices. IEEE Signal Process. Lett. 25(9), 1300–1304 (2018)

    Article  ADS  Google Scholar 

  12. Wu, S.-W., Chen, C.-Y., Liu, Z.: How to construct mutually orthogonal complementary sets with non-power-of-two lengths? IEEE Trans. Inf. Theory 67(6), 3464–3472 (2021)

    Article  MathSciNet  Google Scholar 

  13. Sarkar, P., Liu, Z., Majhi, S.: Multivariable Function for New Complete Complementary Codes With Arbitrary Lengths. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.10517arXiv:2102.10517

  14. Kumar, P., Majhi, S., Paul, S.: A Direct Construction of GCP and Binary CCC of Length Non Power of Two. arXiv (2021). arXiv:2109.08567

  15. Fan, P., Yuan, W., Tu, Y.: Z-complementary binary sequences. IEEE Signal Process. Lett. 14(8), 509–512 (2007)

    Article  ADS  Google Scholar 

  16. Wu, S.-W., Chen, C.-Y.: Optimal Z-complementary sequence sets with good peak-to-average power-ratio property. IEEE Signal Process. Lett. 25(10), 1500–1504 (2018)

    Article  ADS  Google Scholar 

  17. Xie, C., Sun, Y., Ming, Y.: Constructions of optimal binary Zcomplementary sequence sets with large zero correlation zone. IEEE Signal Process. Lett. 28, 1694–1698 (2021)

    Article  ADS  Google Scholar 

  18. Yu, T., Adhikary, A.R., Wang, Y., Yang, Y.: New class of optimal Zcomplementary code sets. IEEE Signal Process. Lett. 29, 1477–1481 (2022)

    Article  ADS  Google Scholar 

  19. Ghosh, G., Majhi, S., Sarkar, P., Upadhaya, A.K.: Direct construction of optimal Z-complementary code sets with even lengths by using generalized Boolean functions. IEEE Signal Process. Lett. 29, 872–876 (2022)

    Article  ADS  Google Scholar 

  20. Sarkar, P., Majhi, S.: A direct construction of optimal ZCCS with maximum column sequence PMEPR two for MC-CDMA system. IEEE Commun. Lett. 25(2), 337–341 (2021)

    Article  Google Scholar 

  21. Sarkar, P., Majhi, S., Liu, Z.: Pseudo-boolean functions for optimal Zcomplementary code sets with flexible lengths. IEEE Signal Process. Lett. 28, 1350–1354 (2021)

    Article  ADS  Google Scholar 

  22. Sarkar, P., Roy, A., Majhi, S.: Construction of Z-complementary code sets with non-power-of-two lengths based on generalized Boolean functions. IEEE Commun. Lett. 24(8), 1607–1611 (2020)

    Article  Google Scholar 

  23. Liu, Z., Parampalli, U., Guan, Y.L., Boztas, S.: Constructions of optimal and near-optimal quasi-complementary sequence sets from Singer difference sets. IEEE Wirel. Commun. Lett. 2(5), 487–490 (2013)

    Article  Google Scholar 

  24. Liu, Z.L., Guan, Y.L., Mow, W.H.: Improved lower bound for quasicomplementary sequence set. In: IEEE International Symposium on Information Theory Proceedings, pp. 489–493 (2011)

  25. Welch, L.: Lower bounds on the maximum cross correlation of signals (corresp.). IEEE Trans. Inf. Theory 20(3), 397–399 (1974)

  26. Li, Y., Liu, T., Xu, C.: Constructions of asymptotically optimal quasicomplementary sequence sets. IEEE Commun. Lett. 22(8), 1516–1519 (2018)

    Article  Google Scholar 

  27. Zhou, Z., Liu, F., Adhikary, A.R., Fan, P.: A generalized construction of multiple complete complementary codes and asymptotically optimal aperiodic quasi-complementary sequence sets. IEEE Trans. Commun. 68(6), 3564–3571 (2020)

    Article  Google Scholar 

  28. Adhikary, A.R., Feng, Y., Zhou, Z., Fan, P.: Asymptotically optimal and near-optimal aperiodic quasi-complementary sequence sets based on Florentine rectangles. IEEE Trans. Commun. 70(3), 1475–1485 (2022)

    Article  Google Scholar 

  29. Zhang, C., Lin, X., Hatori, M.: Novel two dimensional complementary sequences in ultra wideband wireless communications. In: IEEE Conference on Ultra Wideband Systems and Technologies, pp. 398–402 (2003)

  30. Hershey, J.E., Yarlagadda, R.: Two-dimensional synchronisation. Electron. Lett. 19(19), 801–803 (1983)

    Article  ADS  Google Scholar 

  31. Li, F., Jiang, Y., Du, C., Wang, X.: Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission. IEEE Trans. Signal Process. 69, 2100–2113 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  32. Turcsány, M., Farkaš, P.: New 2D-MC-DS-SS-CDMA techniques based on two-dimensional orthogonal complete complementary codes. In: Fazel, K., Kaiser, S. (eds.) Multi-Carrier Spread-Spectrum, pp. 49–56. Springer, Dordrecht (2004)

    Chapter  Google Scholar 

  33. Jedwab, J., Parker, M.G.: Golay complementary array pairs. Des. Codes Cryptogr. 44(1), 209–216 (2007)

    Article  MathSciNet  Google Scholar 

  34. Zeng, F., Zhang, Z.: Two dimensional periodic complementary array sets. In: 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1–4 (2010)

  35. Farkas, P., Turcsany, M.: Two-dimensional orthogonal complete complementary codes. In: SympoTIC’03. Joint 1st Workshop on Mobile Future and Symposium on Trends in Communications, pp. 21–24 (2003)

  36. Zeng, F., Zhang, Z., Ge, L.: Construction of two-dimensional complementary orthogonal sequences with ZCZ and their lower bound. In: 2nd Asia Pacific Conference on Mobile Technology, Applications and Systems, pp. 1–6 (2005)

  37. Turcsany, M., Farkas, P.: Two-dimensional quasi orthogonal complete complementary codes. In: SympoTIC’03. Joint 1st Workshop on Mobile Future and Symposium on Trends in Communications, pp. 37–40 (2003)

  38. Levenshtein, V.I.: New lower bounds on aperiodic crosscorrelation of binary codes. IEEE Trans. Inf. Theory 45(1), 284–288 (1999)

    Article  MathSciNet  Google Scholar 

  39. Liu, Z., Guan, Y.L., Mow, W.H.: A tighter correlation lower bound for quasi-complementary sequence sets. IEEE Trans. Inf. Theory 60(1), 388–396 (2014)

    Article  MathSciNet  Google Scholar 

  40. Turcsany, M., Farkas, P., Duda, P., Kralovic, J.: Performance evaluation of two-dimensional quasi orthogonal complete complementary codes in fading channels. In: Joint IST Workshop on Mobile Future, 2006 and the Symposium on Trends in Communications. SympoTIC ’06., pp. 84–87 (2006)

  41. Berlekamp, E.R.: Algebraic coding theory. In: McGraw-Hill Series in Systems Science (1984)

  42. Sarkar, P., Li, C., Majhi, S., Liu, Z.: New Correlation Bound and Construction of Quasi-Complementary Code Sets (2022)

  43. Liu, Z., Guan, Y.L., Parampalli, U., Boztaş, S.: Quadratic weight vector for tighter aperiodic Levenshtein bound. In: 2013 IEEE International Symposium on Information Theory, pp. 3130–3134 (2013)

  44. Liu, Z., Parampalli, U., Guan, Y.L., Boztaş, S.: A new weight vector for a tighter Levenshtein bound on aperiodic correlation. IEEE Trans. Inf. Theory 60(2), 1356–1366 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports for this work. The work of Abhishek Roy was supported in parts by the Senior Research Fellowship of CSIR-HRDG, Govt. of India with file number 09/1023(0025)/2018-EMR-I, and the work of Sudhan Majhi was supported by the MATRICS project under SERB, Govt. of India with file number MTR/2020/000238(Ver-1) and the EEQ project under SERB, Govt. of India with file number EEQ/2018/000201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhan Majhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Majhi, S. Lower bounds on the maximum cross-correlations of 2-D quasi-complementary array sets. Cryptogr. Commun. 16, 229–247 (2024). https://doi.org/10.1007/s12095-023-00665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-023-00665-z

Keywords

Mathematics Subject Classification (2010)

Navigation