Abstract
We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are—like in classical reaction kinetics—represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might—in general—be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilionis et al., Theory Biosci, 2011).
Similar content being viewed by others
References
Arvas M et al (2010) Detecting novel genes with sparse arrays. Gene 467(1–2):41–51. doi:10.1016/j.gene.2010.07.009
Atkinson MR et al (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113(5):597–607
Battle A et al (2010) Automated identification of pathways from quantitative genetic interaction data. Mol Syst Biol 6:379. doi:10.1038/msb.2010.27
Blasberg R (2002) PET imaging of gene expression. Eur J Cancer 38(16):2137–2146
Bockhorst J et al (2003) A Bayesian network approach to operon prediction. Bioinformatics 19(10):1227–1235
Branicky MS (2005) Introduction to hybrid systems. In: Hristu-Varsakelis D, Levine WS (eds) Handbook of networked and embedded control systems. Birkhäuser, Boston, pp 91–116
Broom BM et al (2010) Building networks with microarray data. Methods Mol Biol 620:315–343. doi:10.1007/978-1-60761-580-4_10
Cantone I et al (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1):172–181. doi:10.1016/j.cell.2009.01.055
Domijan M, Kirkilionis M (2008) Graph theory and qualitative analysis of reaction networks. Netw Heterog Media 3(2):295–322
Domijan M, Kirkilionis M (2009) Bistability and oscillations in chemical reaction networks. J Math Biol 59(4):467–501. doi:10.1007/s00285-008-0234-7
Dufva M (2009) Introduction to microarray technology. Methods Mol Biol 529:1–22. doi:10.1007/978-1-59745-538-1_1
Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338
Fromentin J, Eveillard D, Roux O (2010) Hybrid modeling of biological networks: mixing temporal and qualitative biological properties. BMC Syst Biol 4:79. doi:10.1186/1752-0509-4-79
Fuellen G (2010) Evolution of gene regulation—on the road towards computational inferences. Brief Bioinform. doi:10.1093/bib/bbq060
Galperin MY, Koonin EV (2010) From complete genome sequence to complete understanding?. Trends Biotechnol 28(8):398–406. doi:10.1016/j.tibtech.2010.05.006
Gardiner CW (1990) Handbook of stochastic methods. Springer Verlag, Berlin
Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342
Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55
Gonze D (2010) Coupling oscillations and switches in genetic networks. Biosystems 99(1):60–69. doi:10.1016/j.biosystems.2009.08.009
Guantes R, Poyatos JF (2006) Dynamical principles of two-component genetic oscillators. PLoS Comput Biol 2(3):e30
Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton
Hartemink AJ et al (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Pacific symposium on biocomputing, pp 422–433
Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420(6912):224–230
Holmans P (2010) Statistical methods for pathway analysis of genome-wide data for association with complex genetic traits. Adv Genet 72:141–179. doi:10.1016/B978-0-12-380862-2.00007-2
Jacob F, Monod J (1961) On the regulation of gene activity. In: Cold Spring Harbour symposia on quantitative biology 26:193–211
Jaimovich A et al (2010) Modularity and directionality in genetic interaction maps. Bioinformatics 26(12):i228–i236. doi:10.1093/bioinformatics/btq197
Jansen R et al (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644):449–453. doi:10.1126/science.1087361
Janus U (2009) Biochemical systems analysis: a study of function and design in molecular biology. Ph.D thesis, University of Warwick
Janus U (2009) A PERL Algorithm to compute infinitesimal generators for Markov chains describing genetic modules, University of Warwick. Download from: http://lora.maths.warwick.ac.uk
Joosten RP et al (2010) A series of PDB related databases for everyday needs. Nucleic Acids Res. doi:10.1093/nar/gkq1105
Julius AA et al (2007) Hybrid model predictive control of induction of Escherichia coli. In: Proceedings of the 46th IEEE conference on decision and control. New Orleans, LA, USA, Dec. 12–14
Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81(6):3116–3136
Kirkilionis M (2010) Exploration of cellular reaction systems. Brief Bioinform 11(1):153–178
Kirkilionis M, Sbano L (2010) An averaging principle for combined interaction graphs. Connectivity and applications to genetic switches. Adv Complex Syst 13(3):293–326
Kirkilionis M, Sbano L (In preparation) An averaging principle for combined interaction graphs. Adv Complex Syst
Kirkilionis M, Janus U, Sbano L (2011) Multi-scale genetic dynamic modelling II: application to synthetic biology. An algorithmic markov chain based approach. Theory Biosci. doi:10.1007/s12064-011-0126-z
Madar A, Bonneau R (2009) Learning global models of transcriptional regulatory networks from data. Methods Mol Biol 541:181. doi:10.1007/978-1-59745-243-4_9
Mader U et al (2010) Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods. Curr Opin Biotechnol. doi:10.1016/j.copbio.2010.10.003
Marucci L et al (2010) Derivation, identification and validation of a computational model of a novel synthetic regulatory network in yeast. J Math Biol. doi:10.1007/s00285-010-0350-z
Merris R (1997) Multilinear algebra. Gordon and Beach Science Publishers, Amsterdam
Ng PC, Kirkness EF (2010) Whole genome sequencing. Methods Mol Biol 628:215–226. doi:10.1007/978-1-60327-367-1_12
Ritchie MD, Bush WS (2010) Genome simulation approaches for synthesizing in silico datasets for human genomics. Adv Genet 72:1–24. doi:10.1016/B978-0-12-380862-2.00001-1
Sarder P et al (2010) Estimating sparse gene regulatory networks using a bayesian linear regression. IEEE Trans Nanobiosci 9(2):21–131. doi:10.1109/TNB.2010.2043444
Sbano L, Kirkilionis M (2008a) Molecular systems with infinite and finite degrees of freedom. Part I: multi-scale analysis. WMI Preprint 5/2007. Available at: arXiv:0802.4259v2 [q-bio.BM]
Sbano L, Kirkilionis M (2008b) Molecular systems with infinite and finite degrees of freedom. Part II: Deterministic dynamics and examples. WMI Preprint 7/2007. Available at: arXiv:0802.4279v1 [q-bio.MN]
Sbano L, Kirkilionis M (2008c) Multiscale analysis of reaction networks. Theory Biosci 127:107–123
Schatz MC (2010) The missing graphical user interface for genomics. Genome Biol 11(8):128. doi:10.1186/gb-2010-11-8-128
Serganova I et al (2008) Molecular imaging: reporter gene imaging. Handb Exp Pharmacol 185(Pt 2):167–223. doi:10.1007/978-3-540-77496-9_8
Shmulevich I, Aitchison JD (2009) Deterministic and stochastic models of genetic regulatory networks. Methods Enzymol 46:335–356. doi:10.1016/S0076-6879(09)67013-0
van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier B.V., Amsterdam
Vilar JMG, Leibler S (2003) DNA looping and physical constraints on transcription regulation. J Mol Biol 331(5):981–989
Acknowledgments
The study in this article was partially supported by UniNet contract 12990 funded by the European Commission in the context of the VI Framework Programme.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kirkilionis, M., Janus, U. & Sbano, L. Multi-scale genetic dynamic modelling I : an algorithm to compute generators. Theory Biosci. 130, 165–182 (2011). https://doi.org/10.1007/s12064-011-0125-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12064-011-0125-0