Seeing beyond the average cell: branching process models of cell proliferation, differentiation, and death during mouse brain development | Theory in Biosciences Skip to main content

Advertisement

Log in

Seeing beyond the average cell: branching process models of cell proliferation, differentiation, and death during mouse brain development

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

We develop a family of branching process models to study cerebral cortical development at the level of individual neural stem and progenitor cells (NS/PCs) and the neurons they produce. Population-level data about “the average NS/PC” is incorporated as constraints for exploring (i) heterogeneity in the proliferative neural cell types and (ii) variability in daughter cell fate decision making. Preliminary studies demonstrate this variability, generate testable hypotheses about heterogeneity, and motivate new experiments moving forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez-Buylla A, Garcia-Verdugo J, Tramontin A (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 4:287–293

    Article  Google Scholar 

  • Angevine J, Sidman R. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    Article  PubMed  Google Scholar 

  • Attardo A, Calegari F, Haubensak W, Wilsch-Brauninger M, Huttner W (2008) Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 3(6) e2388

  • Bayer S, Altman J (1991) Neocortical development. Raven Press Ltd., New York

    Google Scholar 

  • Blaschke AJ, Staley K, Chun J (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122:1165–1174

    CAS  PubMed  Google Scholar 

  • Brenner S (1998) Biological computation. In: The limits of reductionism in biology. Wiley, New York, pp 106–116

  • Brouha B, Schustak J, Badge R, Lutz-Prigge S, Farley A, Moran J, Kazazian H (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci 100(9):5280–5285

    Article  CAS  PubMed  Google Scholar 

  • Bruyère H, Rupps R, Kuchinka B, Friedman J, Robinson W (2000) Recurrent trisomy 21 in a couple with a child presenting trisomy 21 mosaicism and maternal uniparental disomy for chromosome 21 in the euploid cell line. Am J Med Genet 94(1):35–41

    Google Scholar 

  • Bylund M, Andersson E, Novitch B, Muhr J (2003) Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6(11):1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Hayes NL, Takahashi T, Caviness VS Jr, Nowakowski RS (2002) Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior. J Neurosci Res 69:731–744

    Article  CAS  PubMed  Google Scholar 

  • Calegari F, Haubensak W, Haffner C, Huttner WB (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25(28):6533–6538

    Article  CAS  PubMed  Google Scholar 

  • Case M, MacMillan H (2009) On simulating the generation of mosaicism during mammalian cerebral cortical development. J Biol Syst 17(1):27–62

    Article  CAS  Google Scholar 

  • Caviness V, Takahashi T, Nowakowski R (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18(9):379–383

    Article  CAS  PubMed  Google Scholar 

  • Caviness V Jr, Goto T, Tarui T, Takahashi T, Bhide P, Nowakowski R (2003) Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb Cortex 13(6):592–598

    Article  PubMed  Google Scholar 

  • Coufal N, Garcia-Perez J, Peng G, Yeo G, Mu Y, Lovci M, Morell M, Oâ K, et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Dierssen M, Herault Y, Estivill X (2009) Aneuploidy: from a physiological mechanism of variance to down syndrome. Physiol Rev 89(3):887

    Article  CAS  PubMed  Google Scholar 

  • Englund C, Fink A, Lau C, Pham D, Daza RAM, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25(1):247–251

    Article  CAS  PubMed  Google Scholar 

  • Farkas L, Huttner WB (2008) The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20:707–715

    Article  CAS  PubMed  Google Scholar 

  • Frank S (2003) Somatic mosaicism and cancer: inference based on a conditional Luria–Delbrück distribution. J Theor Biol 223(4):405–412

    Article  PubMed  Google Scholar 

  • Frank S (2009) Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci 107:1725–1730

    Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Gair J, Arbour L, Rupps R, Jiang R, Bruyere H, Robinson W (2005) Recurrent trisomy 21: four cases in three generations. Clin Genet 68(5):430–435

    Article  CAS  PubMed  Google Scholar 

  • Geller L, Potter H (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis 6(3):167–179

    Article  CAS  PubMed  Google Scholar 

  • Gohlke J, Griffith W, Bartell S, Lewandowski T, Faustman E (2002) A computational model of neocortical neurogenesis predicts ethanol-induced neocortical neuron deficits. Dev Brain Res 24:467–477

    CAS  Google Scholar 

  • Goodier J, Kazazian H (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788

    Article  PubMed  Google Scholar 

  • Harris T (2002) The theory of branching processes. Dover Publications, New York

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. PNAS 101(9):3196–3201

    Article  CAS  PubMed  Google Scholar 

  • Haydar T, Nowakowski R, Yarowsky P, Krueger B (2000) Role of founder cell deficit and delayed neuronogenesis in microencephaly of the trisomy 16 mouse. J Neurosci 20:4156–4164

    CAS  PubMed  Google Scholar 

  • Iacopetti P, Michelini M, Stuckmann I, Oback B, Aaku-Saraste E, Huttner W (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci USA 96(8):4639–4644.

    Google Scholar 

  • Iourov I, Vorsanova S, Liehr T, Yurov Y (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Kazazian H, Goodier J (2002) LINE drive retrotransposition and genome instability. Cell 110(3):277–280

    Article  CAS  PubMed  Google Scholar 

  • Kazazian H, Moran J (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Kazazian H Jr (2004) Mobile elements: drivers of genome evolution. Science 1089670(1626):303

    Google Scholar 

  • Kimmel M, Axelrod D (2002) Branching processes in biology. Springer Verlag, Berlin

  • Komarova N, Lengauer C, Vogelstein B (2002) Dynamics of genetic instability in sporadic and familial colorectal cancer. Cancer Biol Ther 1(6):685–692

    CAS  PubMed  Google Scholar 

  • Komarova N, Sengupta A, Nowak M (2003) Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theoret Biol 223(4):433–450

    Article  CAS  Google Scholar 

  • Kraft N, Cornwell W, Webb C, Ackerly D (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170(2):271–283

    Article  PubMed  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–84

    Google Scholar 

  • Kriegstein A, Noctor S, Martínez-Cerdeño V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7(11):883–890

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie D, Moore L, Nakashima K, Asashima M, Gage F (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105

    Article  CAS  Google Scholar 

  • Lo W, Chou C, Gokoffski K, Wan F, Lander A, Calof A, Nie Q (2009) Feedback regulation in multistage cell lineages. Math Biosci Eng 6:59–82

    Article  PubMed  Google Scholar 

  • Luskin M, Pearlman A, Sanes J (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1(8):635

    Article  CAS  PubMed  Google Scholar 

  • Mandal P, Kazazian H (2008) SnapShot: vertebrate transposons. Cell 135(1):192-192.e1

    Google Scholar 

  • McConnell MJ, MacMillan H, Chun J (2009) Mathematical modeling supports substantial mouse neural progenitor cell death. Neural Dev 4(1):28

    Google Scholar 

  • Merks RM, Glazier JA (2005) A cell-centered approach to developmental biology. Physica A Stat Mech Appl 352(1):113–130

    Article  CAS  Google Scholar 

  • Miyama S, Takahashi T, Nowakowski RS, Caviness VS Jr (1997) A gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium. Cereb Cortex 7:678–689

    Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface dividing cortical progenitor cells. Development 131:3133–3145

    Article  CAS  PubMed  Google Scholar 

  • Mode C (1969) Applications of generalized multi-type age-dependent branching processes in population genetics. Bull Math Biol 31(3):575–589

    CAS  Google Scholar 

  • Muotri AR, Chu V, Marchetto M, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by l1 retrotransposition. Nature 435:903–910

    Article  CAS  PubMed  Google Scholar 

  • Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity. Nature 441(7097):1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Naas T, DeBerardinis R, Moran J, Ostertag E, Kingsmore S, Seldin M, Hayashizaki Y, Martin S, Kazazian H (1998) An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J 17(2):590

    Article  CAS  PubMed  Google Scholar 

  • Noble D (2006) The music of life: biology beyond the genome. Oxford University Press, Oxford

    Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22(8):3161–3173

    CAS  PubMed  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–134

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Komarova N, Sengupta A, Jallepalli P, Shih I, Vogelstein B, Lengauer C (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci 99(25):16,226–16,231

    Article  CAS  Google Scholar 

  • Oppenheim R (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  CAS  PubMed  Google Scholar 

  • Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27(9):847–52

    Article  CAS  PubMed  Google Scholar 

  • Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci 98(23):13,361–13,366

    Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Slater JL, Landman KA, Hughes BD, Shen Q, Temple S (2009) Cell lineage tree models of neurogenesis. J Theoret Biol 256:164–179

    Article  Google Scholar 

  • Spencer S, Gerety R, Pienta K, Forrest S (2006) Modeling somatic evolution in tumorigenesis. PLoS Comput Biol 2(8):e108

    Article  PubMed  Google Scholar 

  • Suh H, Deng W, Gage F (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25(1):253–275

    Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15(9):6046–6057

    CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16(19):6183–6196

    CAS  PubMed  Google Scholar 

  • Takahashi T, S, NR, Caviness Jr VS (1997) The mathematics of neocortical neuronogenesis. Dev Neurosci 19(1):17–22

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  CAS  PubMed  Google Scholar 

  • Vaccarino F, Schwartz ML, Raballo R, Rhee J, Lyn-Cook R (1999) Fibroblast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Curr Topics Dev Biol 46:179–200

    Article  CAS  Google Scholar 

  • Walsh C, Cepko CL (1992) Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255:434–440

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AL, Jordan SA, Sharpe JA, Price D, Jackson IJ (2004) Widespread tangential dispersion and extensive cell death during early neurogenesis in the mouse neocortex. Dev Biol 267:109–118

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Zingler N, Schumann G, Stratling W (2001) Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucl Acids Res 29(21):4493

    Article  CAS  PubMed  Google Scholar 

  • Yurov Y, Iourov I, Vorsanova S, Demidova I, Kravetz V, Beresheva A, Kolotii A, Monakchov V, Uranova N, Vostrikov V et al (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophrenia Res 98(1–3):139–147

    Article  Google Scholar 

  • Yurov Y, Vorsanova S, Iourov I, Demidova I, Beresheva A, Kravetz V, Monakhov V, Kolotii A, Voinova-Ulas V, Gorbachevskaya N (2007) Unexplained autism is frequently associated with low-level mosaic aneuploidy. Br Med J 44(8):521

    CAS  Google Scholar 

  • Zhao X, Ueba T, Christie B, Barkho B, McConnell M, Nakashima K, Lein E, Eadie B, Willhoite A, Muotri A, et al (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci 100(11):6777–6782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Fred H. Gage, Jan Medlock, the late Michael A. Case, and anonymous reviewers for essential feedback in the development of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh R. MacMillan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacMillan, H.R., McConnell, M.J. Seeing beyond the average cell: branching process models of cell proliferation, differentiation, and death during mouse brain development. Theory Biosci. 130, 31–43 (2011). https://doi.org/10.1007/s12064-010-0107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-010-0107-7

Keywords

Navigation