Abstract
Performing group analysis on magnetic resonance imaging (MRI) data with linear mixed-effects (LME) models is challenging due to its large dimensionality and inherent multi-level covariance structure. In addition, as large-scale collaborative projects become commonplace in neuroimaging, data must increasingly be stored and analyzed from different locations. In such settings, substantial overhead can occur in terms of data transfer and coordination between participating research groups. In some cases, data cannot be pooled together due to privacy or regulatory concerns. In this work, we propose a decentralized LME model to perform a large-scale analysis of data from different collaborations without data pooling. This method is efficient as it overcomes the hurdles of data sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results highlight gray matter reductions in the temporal lobe/insula and medial frontal regions in schizophrenia, consistent with prior studies. Our analysis also demonstrates that decentralized LME models achieve similar performance compared to the models trained with all the data in one location. We also implement the decentralized LME approach in COINSTAC, an open source, decentralized platform for federating neuroimaging analysis, providing an easy to use tool for dissemination to the neuroimaging community.
Similar content being viewed by others
References
Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725.
Basodi, S., Raja, R., Ray, B., Gazula, H., Sarwate, A. D., Plis, S., Liu, J., Verner, E., & Calhoun, V. D. (2022). Decentralized brain age estimation using mri data. Neuroinformatics, pages 1–10.
Bearden, C. E., & Thompson, P. M. (2017). Emerging global initiatives in neurogenetics: the enhancing neuroimaging genetics through meta-analysis (enigma) consortium. Neuron, 94(2), 232–236.
Beckmann, C., Jenkinson, M., & Smith, S. (2003a). General multilevel linear modeling for group analysis in fmri. NeuroImage, 20, 1052–63.
Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003b). General multilevel linear modeling for group analysis in fmri. Neuroimage, 20(2), 1052–1063.
Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., & Sabuncu, M. R. (2013). Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage, 66, 249–260.
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., et al. (2018). The adolescent brain cognitive development (abcd) study: imaging acquisition across 21 sites. Developmental cognitive neuroscience, 32, 43–54.
Chen, G., Saad, Z., Britton, J., Pine, D., & Cox, R. (2013a). Linear mixed-effects modeling approach to fmri group analysis. NeuroImage, 73.
Chen, G., Saad, Z. S., Britton, J. C., Pine, D. S., & Cox, R. W. (2013b). Linear mixed-effects modeling approach to fmri group analysis. Neuroimage, 73, 176–190.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.
Fischl, B. (2012). Freesurfer. Neuroimage, 62(2), 774–781.
Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L., Group, B. D. C., et al. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327.
Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102.
Friston, K., Stephan, K., Lund, T., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. NeuroImage, 24, 244–52.
Friston, K. J., Stephan, K. E., Lund, T. E., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. Neuroimage, 24(1), 244–252.
Gazula, H., Holla, B., Zhang, Z., Xu, J., Verner, E., Kelly, R., Schumann, G., & Calhoun, V. D. (2019). Decentralized multi-site vbm analysis during adolescence shows structural changes linked to age, body mass index, and smoking: A coinstac analysis. bioRxiv, page 846386.
Gollub, R. L., Shoemaker, J. M., King, M. D., White, T., Ehrlich, S., Sponheim, S. R., Clark, V. P., Turner, J. A., Mueller, B. A., Magnotta, V., et al. (2013). The mcic collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics, 11(3), 367–388.
Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42(4), 805–820.
Koerner, T. K., & Zhang, Y. (2017). Application of linear mixed-effects models in human neuroscience research: a comparison with pearson correlation in two auditory electrophysiology studies. Brain sciences, 7(3), 26.
Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, pages 963–974.
Lange, N. (2003). What can modern statistics offer imaging neuroscience? Statistical methods in medical research, 12(5), 447–469.
Larobina, M., & Murino, L. (2014). Medical image file formats. Journal of digital imaging, 27(2), 200–206.
Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.
Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of neuroscience methods, 264, 47–56.
Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012). Estimating and testing variance components in a multi-level glm. NeuroImage, 59(1), 490–501.
Lindstrom, M. J., & Bates, D. M. (1988). Newton-raphson and em algorithms for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association, 83(404), 1014–1022.
Madhyastha, T., Peverill, M., Koh, N., McCabe, C., Flournoy, J., Mills, K., King, K., Pfeifer, J., & McLaughlin, K. A. (2018). Current methods and limitations for longitudinal fmri analysis across development. Developmental Cognitive Neuroscience, 33:118 – 128. Methodological Challenges in Developmental Neuroimaging: Contemporary Approaches and Solutions.
Maullin-Sapey, T., & Nichols, T. (2022). Blmm: Parallelised computing for big linear mixed models. bioRxiv.
Maullin-Sapey, T., & Nichols, T. E. (2021). Fisher scoring for crossed factor linear mixed models. Statistics and computing, 31(5), 1–25.
Ming, J., Verner, E., Sarwate, A., Kelly, R., Reed, C., Kahleck, T., Silva, R., Panta, S., Turner, J., Plis, S., et al. (2017). Coinstac: Decentralizing the future of brain imaging analysis. F1000Research, 6.
Mumford, J. A., & Nichols, T. (2006). Modeling and inference of multisubject fmri data. IEEE Engineering in Medicine and Biology Magazine, 25(2), 42–51.
Mumford, J. A., & Poldrack, R. A. (2007). Modeling group fmri data. Social cognitive and affective neuroscience, 2(3), 251–257.
Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS. Springer science & business media.
Plis, S. M., Sarwate, A. D., Wood, D., Dieringer, C., Landis, D., Reed, C., Panta, S. R., Turner, J. A., Shoemaker, J. M., Carter, K. W., et al. (2016). Coinstac: a privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Frontiers in neuroscience, 10, 365.
Rootes-Murdy, K., Gazula, H., Verner, E., Kelly, R., DeRamus, T., Plis, S., Sarwate, A., Turner, J., & Calhoun, V. (2022). Federated analysis of neuroimaging data: A review of the field. Neuroinformatics, 20(2), 377–390.
Sarwate, A. D., Plis, S. M., Turner, J. A., Arbabshirani, M. R., & Calhoun, V. D. (2014). Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Frontiers in neuroinformatics, 8, 35.
Senanayake, N., Podschwadt, R., Takabi, D., Calhoun, V. D., & Plis, S. M. (2022). Neurocrypt: Machine learning over encrypted distributed neuroimaging data. Neuroinformatics, 20(1), 91–108.
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., et al. (2015). Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3), e1001779.
Szucs, D., & Ioannidis, J. P. (2020). Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage, 221, 117164.
White, T., Blok, E., & Calhoun, V. D. (2020). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping.
Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for fmri group analysis using bayesian inference. NeuroImage, 21(4), 1732–1747.
Yu, Z., Guindani, M., Grieco, S. F., Chen, L., Holmes, T. C., & Xu, X. (2021). Beyond t test and anova: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron.
Acknowledgements
This work was funded by NIH R01DA040487 and NSF 2112455.
Author information
Authors and Affiliations
Contributions
All the authors helped improve the manuscript. SB designed decentralized models, performed the data analysis for all the models and wrote the initial manuscript. RR and HG designed and provided insights into the decentralized regression models. SP manages the COINSTAC project. JTR and SP provided guidance about implemention of decentralized algorithms in COINSTAC. TMS and TEN have helped in integrating BLMM into COINSTAC's decentralized LME modeling and helped in revising the manuscript. VDC supervised all the stages of the project, helped in revising the mauscript and also funded the project
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Basodi, S., Raja, R., Gazula, H. et al. Decentralized Mixed Effects Modeling in COINSTAC. Neuroinform 22, 163–175 (2024). https://doi.org/10.1007/s12021-024-09657-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-024-09657-7