Decentralized Mixed Effects Modeling in COINSTAC | Neuroinformatics Skip to main content

Advertisement

Log in

Decentralized Mixed Effects Modeling in COINSTAC

  • Research
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Performing group analysis on magnetic resonance imaging (MRI) data with linear mixed-effects (LME) models is challenging due to its large dimensionality and inherent multi-level covariance structure. In addition, as large-scale collaborative projects become commonplace in neuroimaging, data must increasingly be stored and analyzed from different locations. In such settings, substantial overhead can occur in terms of data transfer and coordination between participating research groups. In some cases, data cannot be pooled together due to privacy or regulatory concerns. In this work, we propose a decentralized LME model to perform a large-scale analysis of data from different collaborations without data pooling. This method is efficient as it overcomes the hurdles of data sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results highlight gray matter reductions in the temporal lobe/insula and medial frontal regions in schizophrenia, consistent with prior studies. Our analysis also demonstrates that decentralized LME models achieve similar performance compared to the models trained with all the data in one location. We also implement the decentralized LME approach in COINSTAC, an open source, decentralized platform for federating neuroimaging analysis, providing an easy to use tool for dissemination to the neuroimaging community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basodi, S., Raja, R., Ray, B., Gazula, H., Sarwate, A. D., Plis, S., Liu, J., Verner, E., & Calhoun, V. D. (2022). Decentralized brain age estimation using mri data. Neuroinformatics, pages 1–10.

  • Bearden, C. E., & Thompson, P. M. (2017). Emerging global initiatives in neurogenetics: the enhancing neuroimaging genetics through meta-analysis (enigma) consortium. Neuron, 94(2), 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann, C., Jenkinson, M., & Smith, S. (2003a). General multilevel linear modeling for group analysis in fmri. NeuroImage, 20, 1052–63.

    Article  PubMed  Google Scholar 

  • Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003b). General multilevel linear modeling for group analysis in fmri. Neuroimage, 20(2), 1052–1063.

    Article  PubMed  Google Scholar 

  • Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., & Sabuncu, M. R. (2013). Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage, 66, 249–260.

    Article  PubMed  Google Scholar 

  • Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., et al. (2018). The adolescent brain cognitive development (abcd) study: imaging acquisition across 21 sites. Developmental cognitive neuroscience, 32, 43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, G., Saad, Z., Britton, J., Pine, D., & Cox, R. (2013a). Linear mixed-effects modeling approach to fmri group analysis. NeuroImage, 73.

  • Chen, G., Saad, Z. S., Britton, J. C., Pine, D. S., & Cox, R. W. (2013b). Linear mixed-effects modeling approach to fmri group analysis. Neuroimage, 73, 176–190.

    Article  PubMed  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.

  • Fischl, B. (2012). Freesurfer. Neuroimage, 62(2), 774–781.

    Article  PubMed  Google Scholar 

  • Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L., Group, B. D. C., et al. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327.

  • Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102.

    Article  Google Scholar 

  • Friston, K., Stephan, K., Lund, T., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. NeuroImage, 24, 244–52.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Stephan, K. E., Lund, T. E., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. Neuroimage, 24(1), 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Gazula, H., Holla, B., Zhang, Z., Xu, J., Verner, E., Kelly, R., Schumann, G., & Calhoun, V. D. (2019). Decentralized multi-site vbm analysis during adolescence shows structural changes linked to age, body mass index, and smoking: A coinstac analysis. bioRxiv, page 846386.

  • Gollub, R. L., Shoemaker, J. M., King, M. D., White, T., Ehrlich, S., Sponheim, S. R., Clark, V. P., Turner, J. A., Mueller, B. A., Magnotta, V., et al. (2013). The mcic collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics, 11(3), 367–388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42(4), 805–820.

    Article  CAS  PubMed  Google Scholar 

  • Koerner, T. K., & Zhang, Y. (2017). Application of linear mixed-effects models in human neuroscience research: a comparison with pearson correlation in two auditory electrophysiology studies. Brain sciences, 7(3), 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, pages 963–974.

  • Lange, N. (2003). What can modern statistics offer imaging neuroscience? Statistical methods in medical research, 12(5), 447–469.

    Article  PubMed  Google Scholar 

  • Larobina, M., & Murino, L. (2014). Medical image file formats. Journal of digital imaging, 27(2), 200–206.

    Article  PubMed  Google Scholar 

  • Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.

    Article  CAS  Google Scholar 

  • Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of neuroscience methods, 264, 47–56.

    Article  PubMed  Google Scholar 

  • Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012). Estimating and testing variance components in a multi-level glm. NeuroImage, 59(1), 490–501.

    Article  PubMed  Google Scholar 

  • Lindstrom, M. J., & Bates, D. M. (1988). Newton-raphson and em algorithms for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association, 83(404), 1014–1022.

    Google Scholar 

  • Madhyastha, T., Peverill, M., Koh, N., McCabe, C., Flournoy, J., Mills, K., King, K., Pfeifer, J., & McLaughlin, K. A. (2018). Current methods and limitations for longitudinal fmri analysis across development. Developmental Cognitive Neuroscience, 33:118 – 128. Methodological Challenges in Developmental Neuroimaging: Contemporary Approaches and Solutions.

  • Maullin-Sapey, T., & Nichols, T. (2022). Blmm: Parallelised computing for big linear mixed models. bioRxiv.

  • Maullin-Sapey, T., & Nichols, T. E. (2021). Fisher scoring for crossed factor linear mixed models. Statistics and computing, 31(5), 1–25.

    Article  Google Scholar 

  • Ming, J., Verner, E., Sarwate, A., Kelly, R., Reed, C., Kahleck, T., Silva, R., Panta, S., Turner, J., Plis, S., et al. (2017). Coinstac: Decentralizing the future of brain imaging analysis. F1000Research, 6.

  • Mumford, J. A., & Nichols, T. (2006). Modeling and inference of multisubject fmri data. IEEE Engineering in Medicine and Biology Magazine, 25(2), 42–51.

    Article  PubMed  Google Scholar 

  • Mumford, J. A., & Poldrack, R. A. (2007). Modeling group fmri data. Social cognitive and affective neuroscience, 2(3), 251–257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS. Springer science & business media.

  • Plis, S. M., Sarwate, A. D., Wood, D., Dieringer, C., Landis, D., Reed, C., Panta, S. R., Turner, J. A., Shoemaker, J. M., Carter, K. W., et al. (2016). Coinstac: a privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Frontiers in neuroscience, 10, 365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rootes-Murdy, K., Gazula, H., Verner, E., Kelly, R., DeRamus, T., Plis, S., Sarwate, A., Turner, J., & Calhoun, V. (2022). Federated analysis of neuroimaging data: A review of the field. Neuroinformatics, 20(2), 377–390.

    Article  PubMed  Google Scholar 

  • Sarwate, A. D., Plis, S. M., Turner, J. A., Arbabshirani, M. R., & Calhoun, V. D. (2014). Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Frontiers in neuroinformatics, 8, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Senanayake, N., Podschwadt, R., Takabi, D., Calhoun, V. D., & Plis, S. M. (2022). Neurocrypt: Machine learning over encrypted distributed neuroimaging data. Neuroinformatics, 20(1), 91–108.

    Article  PubMed  Google Scholar 

  • Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., et al. (2015). Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3), e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szucs, D., & Ioannidis, J. P. (2020). Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage, 221, 117164.

    Article  PubMed  Google Scholar 

  • White, T., Blok, E., & Calhoun, V. D. (2020). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping.

  • Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for fmri group analysis using bayesian inference. NeuroImage, 21(4), 1732–1747.

    Article  PubMed  Google Scholar 

  • Yu, Z., Guindani, M., Grieco, S. F., Chen, L., Holmes, T. C., & Xu, X. (2021). Beyond t test and anova: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron.

Download references

Acknowledgements

This work was funded by NIH R01DA040487 and NSF 2112455.

Author information

Authors and Affiliations

Authors

Contributions

All the authors helped improve the manuscript. SB designed decentralized models, performed the data analysis for all the models and wrote the initial manuscript. RR and HG designed and provided insights into the decentralized regression models. SP manages the COINSTAC project. JTR and SP provided guidance about implemention of decentralized algorithms in COINSTAC. TMS and TEN have helped in integrating BLMM into COINSTAC's decentralized LME modeling and helped in revising the manuscript. VDC supervised all the stages of the project, helped in revising the mauscript and also funded the project

Corresponding author

Correspondence to Vince D. Calhoun.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basodi, S., Raja, R., Gazula, H. et al. Decentralized Mixed Effects Modeling in COINSTAC. Neuroinform 22, 163–175 (2024). https://doi.org/10.1007/s12021-024-09657-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-024-09657-7

Keywords

Navigation