Abstract
Recent technological advancements have facilitated the imaging of specific neuronal populations at the single-axon level across the mouse brain. However, the digital reconstruction of neurons from a large dataset requires months of manual effort using the currently available software. In this study, we develop an open-source software called GTree (global tree reconstruction system) to overcome the above-mentioned problem. GTree offers an error-screening system for the fast localization of submicron errors in densely packed neurites and along with long projections across the whole brain, thus achieving reconstruction close to the ground truth. Moreover, GTree integrates a series of our previous algorithms to significantly reduce manual interference and achieve high-level automation. When applied to an entire mouse brain dataset, GTree is shown to be five times faster than widely used commercial software. Finally, using GTree, we demonstrate the reconstruction of 35 long-projection neurons around one injection site of a mouse brain. GTree is also applicable to large datasets (10 TB or higher) from various light microscopes.







Similar content being viewed by others
References
Ascoli, G. A., Krichmar, J. L., Nasuto, S. J., & Senft, S. L. (2001). Generation, description and storage of dendritic morphology data. Philosophical Transactions of the Royal Society B, 356(1412), 1131–1145.
Bohland, J. W., Wu, C., Barbas, H., Bokil, H., Bota, M., Breiter, H. C., et al. (2009). A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLOS Computational Biology, 5(3), e1000334.
Bria, A., Iannello, G., Onofri, L., & Peng, H. (2016). TeraFly: real-time three-dimensional visualization and annotation of terabytes of multidimensional volumetric images. Nature Methods, 13(3), 192–194.
Brown, K. M., Barrionuevo, G., Canty, A. J., De Paola, V., Hirsch, J. A., Jefferis, G. S., et al. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2–3), 143–157. doi:https://doi.org/10.1007/s12021-010-9095-5.
Chung, K., & Deisseroth, K. (2013). CLARITY for mapping the nervous system. Nature Methods, 10(6), 508–513. doi:https://doi.org/10.1038/nmeth.2481.
Defilepe, J. (2010). From the connectome to the synaptome: an epic love story. Science, 330(6008), 1198–1201.
Denk, W., Strickler, J., & Webb, W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248(4951), 73–76.
Donohue, D. E., & Ascoli, G. A. (2011). Automated reconstruction of neuronal morphology: an overview. Brain Research Reviews, 67(1–2), 94–102, doi:10.1016/j.brainresrev.2010.11.003.
Economo, M. N., Clack, N. G., Lavis, L. D., Gerfen, C. R., Svoboda, K., Myers, E. W., et al. (2016). A platform for brain-wide imaging and reconstruction of individual neurons. eLife, 5, e10566. doi:https://doi.org/10.7554/eLife.10566.
Feng, L., Zhao, T., & Kim, J. (2015) neuTube 1.0: A new design for efficient neuron reconstruction software based on the SWC format. eNeuro, 2(1). https://doi.org/10.1523/eneuro.0049-14.2014.
Gong, H., Zeng, S., Yan, C., Lv, X., Yang, Z., Xu, T., et al. (2013). Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage, 74, 87–98.
Han, Y., Kebschull, J. M., Campbell, R. A. A., Cowan, D., Imhof, F., Zador, A. M., et al. (2018). The logic of single-cell projections from visual cortex. Nature, 556(7699), 51–56. doi:https://doi.org/10.1038/nature26159.
Helmstaedter, M., Briggman, K. L., & Denk, W. (2011). High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nature Neuroscience, 14(8), 1081–1088.
Jefferis, G. S., & Livet, J. (2012). Sparse and combinatorial neuron labelling. Current Opinion in Neurobiology, 22(1), 101–110. doi:https://doi.org/10.1016/j.conb.2011.09.010.
Knuth, D. E. (1997) The art of computer programming (Vol. 3). London: Pearson Education.
Li, A., Gong, H., Zhang, B., Wang, Q., Yan, C., Wu, J., et al. (2010). Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330(6009), 1404–1408. doi:https://doi.org/10.1126/science.1191776.
Li, R., Zhu, M., Li, J., Bienkowski, M. S., Foster, N. N., Xu, H., et al. (2019a). Precise segmentation of densely interweaving neuron clusters using G-Cut. Nature Communications, 10(1), 1549. doi:10.1038/s41467-019-09515-0.
Li, S., Quan, T., Xu, C., Huang, Q., Kang, H., Chen, Y., et al. (2019b). Optimization of traced neuron skeleton using lasso-based model. Frontiers in Neuroanatomy, 13, 18–18. doi:https://doi.org/10.3389/fnana.2019.00018.
Li, S., Quan, T., Zhou, H., Huang, Q., Guan, T., Chen, Y., et al. (2019c). Brain-Wide Shape Reconstruction of a Traced Neuron Using the Convex Image Segmentation Method. Neuroinformatics, 18(2), 199–218. doi:https://doi.org/10.1007/s12021-019-09434-x.
Li, S., Quan, T., Zhou, H., Yin, F., Li, A., Fu, L., et al. (2019d). Identifying weak signals in inhomogeneous neuronal images for large-scale tracing of sparsely distributed neurites. Neuroinformatics. doi:https://doi.org/10.1007/s12021-018-9414-9.
Li, S., Zhou, H., Quan, T., Li, J., Li, Y., Li, A., et al. (2016). SparseTracer: the reconstruction of discontinuous neuronal morphology in noisy images. Neuroinformatics, 15(2), 133–149.
Li, Y., Gong, H., Yang, X., Yuan, J., Jiang, T., Li, X., et al. (2017). TDat: An efficient platform for processing petabyte-scale whole-brain volumetric images. Frontiers in Neural Circuits, 11, 51. doi:https://doi.org/10.3389/fncir.2017.00051.
Lichtman, J. W., & Denk, W. (2011). The big and the small: challenges of imaging the brain’s circuits. Science, 334(6056), 618–623.
Luisi, J., Narayanaswamy, A., Galbreath, Z., & Roysam, B. (2011). The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions. Neuroinformatics, 9(2–3), 305–315. doi:https://doi.org/10.1007/s12021-011-9115-0.
Magliaro, C., Callara, A. L., Vanello, N., & Ahluwalia, A. (2017). A manual segmentation tool for three-dimensional neuron datasets. [Methods]. Frontiers in Neuroinformatics, 11(36). https://doi.org/10.3389/fninf.2017.00036.
Megjhani, M., Rey-Villamizar, N., Merouane, A., Lu, Y., Mukherjee, A., Trett, K., et al. (2015). Population-scale three-dimensional reconstruction and quantitative profiling of microglia arbors. Bioinformatics, 31. https://doi.org/10.1093/bioinformatics/btv109.
Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704. doi:https://doi.org/10.1002/cyto.a.20895.
Narasimhan, A., Venkataraju, K. U., Mizrachi, J., Albeanu, D. F., & Osten, P. (2017) A high resolution whole brain imaging using oblique light sheet tomography. bioRxiv, 132423.
Osten, P., & Margrie, T. W. (2013). Mapping brain circuitry with a light microscope. Nature Methods, 10(6), 515–523. doi:https://doi.org/10.1038/nmeth.2477.
Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., et al. (2015). BigNeuron: Large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256. https://doi.org/10.1016/j.neuron.2015.06.036
Peng, H., Meijering, E., & Ascoli, G. A. (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13(3), 259–260. doi:10.1007/s12021-015-9270-9.
Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348¬353.
Peng, H., Zhou, Z., Meijering, E., Zhao, T., Ascoli, G. A., & Hawrylycz, M. (2017). Automatic tracing of ultra-volumes of neuronal images. Nature Methods, 14(4), 332–333. doi:https://doi.org/10.1038/nmeth.4233.
Pietzsch, T., Saalfeld, S., Preibisch, S., & Tomancak, P. (2015). BigDataViewer: visualization and processing for large image data sets. Nature Methods, 12(6), 481–483.
Quan, T., Zhou, H., Li, J., Li, S., Li, A., Li, Y., et al. (2016). NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neurites. Nature Methods, 13(1), 51–54. doi:https://doi.org/10.1038/nmeth.3662.
Radojević, M., & Meijering, E. (2019). Automated neuron reconstruction from 3D fluorescence microscopy images using sequential Monte Carlo estimation. Neuroinformatics, 17(3), 423–442. doi:https://doi.org/10.1007/s12021-018-9407-8.
Ragan, T., Kadiri, L. R., Venkataraju, K. U., Bahlmann, K., Sutin, J., Taranda, J., et al. (2012). Serial two-photon tomography for automated ex vivo mouse brain imaging. Nature Methods, 9(3), 255–248. doi:https://doi.org/10.1038/nmeth.1854.
Rey-Villamizar, N. (2014). Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python. Frontiers in Neuroinformatics. doi:https://doi.org/10.3389/fninf.2014.00039.
Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(4), 387.
Silvestri, L., Bria, A., Sacconi, L., Iannello, G., & Pavone, F. S. (2012). Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Optics Express, 20(18), 20582–20598. doi:https://doi.org/10.1364/OE.20.020582.
Sun, P., Jin, S., Tao, S., Wang, J., Li, A., Li, N., et al. (2020). Highly efficient and super-bright neurocircuit tracing using vector mixing-based virus cocktail. bioRxiv, 705772. https://doi.org/10.1101/705772.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267–288.
Tomer, R., Khairy, K., Amat, F., & Keller, P. J. (2012). Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nature Methods, 9(7), 755.
Wang, Y., Li, Q., Liu, L., Zhou, Z., Ruan, Z., Kong, L., et al. (2019). TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nature Communications, 10(1), 1–9.
Winnubst, J., Bas, E., Ferreira, T. A., Wu, Z., Economo, M. N., Edson, P., et al. (2019) Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell, 179(1), 268–281. e213.
Yang, W. H., Feng, J. S., Yang, J. C., Zhao, F., Liu, J. Y., Guo, Z. M., et al. (2017). Deep edge guided recurrent residual learning for image super-resolution. IEEE Transactions on Image Processing, 26(12), 5895–5907. doi:https://doi.org/10.1109/Tip.2017.2750403.
Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., et al. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9(2–3), 247–261. doi:https://doi.org/10.1007/s12021-011-9120-3.
Acknowledgements
We thank Drs. Yunyun Han, Pavel Osten and Arun Narasimhan for providing testing datasets. We also thank the Optical Bioimaging Core Facility of WNLO-HUST for the support in data acquisition, and the Analytical and Testing Center of HUST for spectral measurements. We thank the help from Li Jing and Su Lei in the design of the software tool. We thank Li Shoucheng, Li Yingfei, Zhao Ming, Wang Hao, Chen Cheng, Zhao Yu, Huang Lu, Kong Xinyi, Li Hanying, Zhou Wuxian, Tian Tian, He Sijie, Wang Danni and Gong Yaqiong for their efforts in testing the software and in tracing neurons.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest.
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, H., Li, S., Li, A. et al. GTree: an Open-source Tool for Dense Reconstruction of Brain-wide Neuronal Population. Neuroinform 19, 305–317 (2021). https://doi.org/10.1007/s12021-020-09484-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-020-09484-6