Abstract
NonInvasive Brain Stimulation (NIBS) is a potential therapeutic tool with growing interest, but neuronavigation-guided software and tools available for the target determination are mostly either expensive or closed proprietary applications. To address these limitations, we propose GeodesicSlicer, a customizable, free, and open-source NIBS therapy research toolkit. GeodesicSlicer is implemented as an extension for the widely used 3D Slicer medical image visualization and analysis application platform. GeodesicSlicer uses cortical stimulation target from either functional or anatomical images to provide functionality specifically designed for NIBS therapy research. The provided algorithms are tested and they are accessible through a convenient graphical user interface. Modules have been created for NIBS target determination according to the position of the electrodes in the 10–20 system electroencephalogram and calculating correction factors to adjust the repetitive Transcranial Magnetic Stimulation (rTMS) dose for the treatment. Two illustrative examples are processing with the module. This new open-source software has been developed for NIBS therapy: GeodesicSlicer is an alternative for laboratories that do not have access to neuronavigation system. The triangulation-based MRI-guided method presented here provides a reproducible and inexpensive way to position the TMS coil that may be used without the use of a neuronavigation system.
Similar content being viewed by others
References
Andoh, J., Riviere, D., Mangin, J. F., Artiges, E., Cointepas, Y., Grevent, D., Paillère-Martinot, M. L., Martinot, J. L., & Cachia, A. (2009). A triangulation-based magnetic resonance image-guided method for transcranial magnetic stimulation coil positioning. Brain Stimulation, 2(3), 123–131. https://doi.org/10.1016/j.brs.2008.10.002.
Beam, W., Borckardt, J. J., Reeves, S. T., & George, M. S. (2009). An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimulation, 2(1), 50–54. https://doi.org/10.1016/j.brs.2008.09.006.
Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8(2), 135–160.
Dayan, E., Thompson, R. M., Buch, E. R., & Cohen, L. G. (2016). 3D-printed head models for navigated non-invasive brain stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 127(10), 3341–3342. https://doi.org/10.1016/j.clinph.2016.08.011.
De Witte, S., Klooster, D., Dedoncker, J., Duprat, R., Remue, J., & Baeken, C. (2018). Left prefrontal neuronavigated electrode localization in tDCS: 10–20 EEG system versus MRI-guided neuronavigation. Psychiatry Research: Neuroimaging, 274, 1–6. https://doi.org/10.1016/j.pscychresns.2018.02.001.
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271. https://doi.org/10.1007/BF01386390.
Dollfus, S., Jaafari, N., Guillin, O., Trojak, B., Plaze, M., Saba, G., Nauczyciel, C., Montagne Larmurier, A., Chastan, N., Meille, V., Krebs, M. O., Ayache, S. S., Lefaucheur, J. P., Razafimandimby, A., Leroux, E., Morello, R., Marie Batail, J., Brazo, P., Lafay, N., Wassouf, I., Harika-Germaneau, G., Guillevin, R., Guillevin, C., Gerardin, E., Rotharmel, M., Crépon, B., Gaillard, R., Delmas, C., Fouldrin, G., Laurent, G., Nathou, C., & Etard, O. (2018). High-frequency Neuronavigated rTMS in auditory verbal hallucinations: A pilot double-blind controlled study in patients with schizophrenia. Schizophrenia Bulletin, 44(3), 505–514. https://doi.org/10.1093/schbul/sbx127.
Fox, M. D., Liu, H., & Pascual-Leone, A. (2013). Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage, 66, 151–160. https://doi.org/10.1016/j.neuroimage.2012.10.082.
Herbsman, T., & Nahas, Z. (2011). Anatomically based targeting of prefrontal cortex for rTMS. Brain Stimulation, 4(4), 300–302. https://doi.org/10.1016/j.brs.2011.01.004.
Herwig, U., Padberg, F., Unger, J., Spitzer, M., & Schönfeldt-Lecuona, C. (2001). Transcranial magnetic stimulation in therapy studies: Examination of the reliability of “standard” coil positioning by neuronavigation. Biological Psychiatry, 50(1), 58–61.
Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2), 95–99.
Hoffman, R. E., Boutros, N. N., Berman, R. M., Roessler, E., Belger, A., Krystal, J. H., & Charney, D. S. (1999). Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated “voices”. Biological Psychiatry, 46(1), 130–132.
Hoffman, R. E., Wu, K., Pittman, B., Cahill, J. D., Hawkins, K. A., Fernandez, T., & Hannestad, J. (2013). Transcranial magnetic stimulation of Wernicke’s and right homologous sites to curtail “voices:” a randomized trial. Biological Psychiatry, 73(10), 1008–1014. https://doi.org/10.1016/j.biopsych.2013.01.016.
Jasper, H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.
Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the international federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52, 3–6.
Kraus, D., & Gharabaghi, A. (2015). Projecting navigated TMS sites on the Gyral anatomy decreases inter-subject variability of cortical motor maps. Brain Stimulation, 8(4), 831–837. https://doi.org/10.1016/j.brs.2015.03.006.
Lahti, A. C. (2016). Making Progress toward individualized medicine in the treatment of psychosis. The American Journal of Psychiatry, 173(1), 5–7. https://doi.org/10.1176/appi.ajp.2016.15101320.
McGirr, A., Van den Eynde, F., Tovar-Perdomo, S., Fleck, M. P. A., & Berlim, M. T. (2015). Effectiveness and acceptability of accelerated repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant major depressive disorder: An open label trial. Journal of Affective Disorders, 173, 216–220. https://doi.org/10.1016/j.jad.2014.10.068.
Niyazov, D. M., Butler, A. J., Kadah, Y. M., Epstein, C. M., & Hu, X. P. (2005). Functional magnetic resonance imaging and transcranial magnetic stimulation: Effects of motor imagery, movement and coil orientation. Clinical Neurophysiology, 116(7), 1601–1610. https://doi.org/10.1016/j.clinph.2005.02.028.
Pieper, S., Lorensen, B., Schroeder, W., & Kikinis, R. (2006). The NA-MIC kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006. (pp. 698–701). Presented at the 3rd IEEE international symposium on biomedical imaging: Nano to macro, 2006. https://doi.org/10.1109/ISBI.2006.1625012.
Pinter, C., Lasso, A., Wang, A., Jaffray, D., & Fichtinger, G. (2012). SlicerRT: Radiation therapy research toolkit for 3D slicer. Medical Physics, 39(10), 6332–6338. https://doi.org/10.1118/1.4754659.
Rodseth, J., WashaBaugh, E. P., & Krishnan, C. (2017). A novel low-cost approach for navigated Transcranial magnetic stimulation. Restorative Neurology and Neuroscience, 35(6), 601–609. https://doi.org/10.3233/RNN-170751.
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Safety of TMS Consensus Group. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 120(12), 2008–2039. https://doi.org/10.1016/j.clinph.2009.08.016.
Sommer, I. E. C., de Weijer, A. D., Daalman, K., Neggers, S. F., Somers, M., Kahn, R. S., et al. (2007). Can fMRI-guidance improve the efficacy of rTMS treatment for auditory verbal hallucinations? Schizophrenia Research, 93(1–3), 406–408. https://doi.org/10.1016/j.schres.2007.03.020.
Sommer, I. E., Kleijer, H., & Hugdahl, K. (2018). Toward personalized treatment of hallucinations. Current Opinion in Psychiatry, 31(3), 237–245. https://doi.org/10.1097/YCO.0000000000000416.
Stokes, M. G., Chambers, C. D., Gould, I. C., English, T., McNaught, E., McDonald, O., & Mattingley, J. B. (2007). Distance-adjusted motor threshold for transcranial magnetic stimulation. Clinical Neurophysiology, 118(7), 1617–1625. https://doi.org/10.1016/j.clinph.2007.04.004.
Summers, P. M., & Hanlon, C. A. (2017). BrainRuler-a free, open-access tool for calculating scalp to cortex distance. Brain Stimulation, 10(5), 1009–1010. https://doi.org/10.1016/j.brs.2017.03.003.
Trojak, B., Meille, V., Chauvet-Gelinier, J.-C., & Bonin, B. (2012). Does the intensity of transcranial magnetic stimulation need to be adjusted to scalp-cortex distance? The Journal of Neuropsychiatry and Clinical Neurosciences, 24(2), E13. https://doi.org/10.1176/appi.neuropsych.11050114.
Vaghefi, E., Cai, P., Fang, F., Byblow, W. D., Stinear, C. M., & Thompson, B. (2015). MRI guided brain stimulation without the use of a Neuronavigation system. BioMed Research International, 2015, 647510. https://doi.org/10.1155/2015/647510.
Washabaugh, E. P., & Krishnan, C. (2016). A low-cost system for coil tracking during transcranial magnetic stimulation. Restorative Neurology and Neuroscience, 34(2), 337–346. https://doi.org/10.3233/RNN-150609.
Xiao, X., Zhu, H., Liu, W.-J., Yu, X.-T., Duan, L., Li, Z., & Zhu, C.-Z. (2017). Semi-automatic 10/20 identification method for MRI-free probe placement in Transcranial brain mapping techniques. Frontiers in Neuroscience, 11, 4. https://doi.org/10.3389/fnins.2017.00004.
Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., & Winkler, P. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain: A Journal of Neurology, 120(Pt 1), 141–157.
Acknowledgements
The authors would like to thank Drs A. Lasso and K. Yoshimi as well as A. Nourry for their valuable help in 3D Slicer and VTK library, and William P. Armstrong for the English rereading.
Funding Source
This work was supported by the French Health Ministry (Programme Hospitalier de Recherche Clinique), the Fondation Fondamentale, the Association Perceneige, the Region Normandie and the University Caen Normandie.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors have no conflict of interest to declare.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Briend, F., Leroux, E., Nathou, C. et al. GeodesicSlicer: a Slicer Toolbox for Targeting Brain Stimulation. Neuroinform 18, 509–516 (2020). https://doi.org/10.1007/s12021-020-09457-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-020-09457-9