Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification | Neuroinformatics Skip to main content

Advertisement

Log in

Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Conventional Functional connectivity (FC) analysis focuses on characterizing the correlation between two brain regions, whereas the high-order FC can model the correlation between two brain region pairs. To reduce the number of brain region pairs, clustering is applied to group all the brain region pairs into a small number of clusters. Then, a high-order FC network can be constructed based on the clustering result. By varying the number of clusters, multiple high-order FC networks can be generated and the one with the best overall performance can be finally selected. However, the important information contained in other networks may be simply discarded. To address this issue, in this paper, we propose to make full use of the information contained in all high-order FC networks. First, an agglomerative hierarchical clustering technique is applied such that the clustering result in one layer always depends on the previous layer, thus making the high-order FC networks in the two consecutive layers highly correlated. As a result, the features extracted from high-order FC network in each layer can be decomposed into two parts (blocks), i.e., one is redundant while the other might be informative or complementary, with respect to its previous layer. Then, a selective feature fusion method, which combines sequential forward selection and sparse regression, is developed to select a feature set from those informative feature blocks for classification. Experimental results confirm that our novel method outperforms the best single high-order FC network in diagnosis of mild cognitive impairment (MCI) subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson, A., & Cohen, M. S. (2013). Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: An fMRI classification tutorial. Frontiers in Human Neuroscience, 7, 520. doi:10.3389/fnhum.

    PubMed  PubMed Central  Google Scholar 

  • Bain, L.J., Jedrziewski, K., Morrison-Bogorad, M., Albert, M., Cotman, C., Hendrie, H., Trojanowski, J.Q. (2008) Healthy brain aging: A meeting report from the sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on aging. Alzheimer's & dementia: the journal of the Alzheimer's Association, 4:443.

  • Brier, M. R., Thomas, J. B., Fagan, A. M., Hassenstab, J., Holtzman, D. M., Benzinger, T. L., Morris, J. C., & Ances, B. M. (2014). Functional connectivity and graph theory in preclinical Alzheimer's disease. Neurobiology of Aging, 35, 757–768.

    Article  PubMed  Google Scholar 

  • Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement, 3, 186–191.

    Article  PubMed  Google Scholar 

  • Chang, C., Lin, C. (2001) LIBSVM: A library for support vector machines. Citeseer.

  • Chen, X., Yang, J., Ye, Q., & Liang, J. (2011a). Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognition, 44(10–11), 2643–2655.

    Article  Google Scholar 

  • Chen, X., Yang, J., & Liang, J. (2011b). Optimal Locality Regularized Least Squares Support Vector Machine via Alternating Optimization. Neural Processing Letters, 33, 301–315.

    Article  Google Scholar 

  • Chen, X., Xiao, Y., Cai, Y., & Chen, L. (2014). Structural max-margin discriminant analysis for feature extraction. Knowledge-Based Systems, 70, 154–166.

    Article  CAS  Google Scholar 

  • Chen, X., Zhang, H., Gao, Y., Wee, C.-Y., Li, G., & Shen, D. (2016). High-order resting-state functional connectivity network for MCI classification. Human Brain Mapping, 37(9), 3282–3296.

    Article  PubMed  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    Google Scholar 

  • Fekete, T., Wilf, M., Rubin, D., Edelman, S., Malach, R., & Mujica-Parodi, L. R. (2013). Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PloS One, 8(5), e62867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8, 700–711.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432–441.

    Article  PubMed  Google Scholar 

  • Friston, K., Frith, C., Liddle, P., & Frackowiak, R. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5–5.

    Article  CAS  PubMed  Google Scholar 

  • Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., & Chertkow, H. (2006). Mild cognitive impairment. Lancet, 367, 1262–1270.

    Article  PubMed  Google Scholar 

  • Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424–430.

    Article  PubMed  Google Scholar 

  • Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E., & Initiative, A.s.D.N. (2010). Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. NeuroImage, 50, 935–949.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19, 153–158.

    Article  Google Scholar 

  • Jie, B., Shen, D., Zhang, D. (2014a) Brain connectivity hyper-network for MCI classification. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: Springer. P 724-732.

  • Jie, B., Zhang, D., Gao, W., Wang, Q., Wee, C.-Y., & Shen, D. (2014b). Integration of network topological and connectivity properties for neuroimaging classification. Biomedical Engineering, IEEE Transactions on, 61, 576–589.

    Article  Google Scholar 

  • Johnson, S., Schmitz, T., Moritz, C., Meyerand, M., Rowley, H., Alexander, A., Hansen, K., Gleason, C., Carlsson, C., & Ries, M. (2006). Activation of brain regions vulnerable to Alzheimer's disease: The effect of mild cognitive impairment. Neurobiology of Aging, 27, 1604–1612.

    Article  CAS  PubMed  Google Scholar 

  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273–324.

    Article  Google Scholar 

  • Liu, J., Ji, S., & Ye, J. (2009). SLEP: Sparse learning with efficient projections. Arizona State University, 6, 491.

    Google Scholar 

  • Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., & Fulham, M. J. (2015). Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. Biomedical Engineering, IEEE Transactions on, 62, 1132–1140.

    Article  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34, 939–939.

    Article  CAS  PubMed  Google Scholar 

  • Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI. NeuroImage, 44, 1415–1422.

    Article  PubMed  Google Scholar 

  • Mitchell, T.M. (1997) Machine learning. McGraw-Hill New York.

  • Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  • Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Human Brain Mapping, 26, 231–239.

    Article  PubMed  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.

    Article  PubMed  Google Scholar 

  • dos Santos Siqueira, A., Biazoli Junior, C.E., Comfort, W.E., Rohde, L.A., & Sato, J.R. (2014). Abnormal functional resting-state networks in ADHD: Graph theory and pattern recognition analysis of fMRI data. BioMed Research International.

  • Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006) Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. AI 2006: Advances in Artificial Intelligence. Springer p 1015–1021.

  • Sorg, C., Riedl, V., Mühlau, M., Calhoun, V. D., Eichele, T., Läer, L., Drzezga, A., Förstl, H., Kurz, A., & Zimmer, C. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences, 104, 18760–18765.

    Article  CAS  Google Scholar 

  • Stam, C., Jones, B., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer's disease. Cerebral Cortex, 17, 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Stam, C., De Haan, W., Daffertshofer, A., Jones, B., Manshanden, I., Van Walsum, A. V. C., Montez, T., Verbunt, J., De Munck, J., & Van Dijk, B. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain, 132, 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.s.D.N. (2013). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure & Function, 220, 841–859.

    Article  Google Scholar 

  • Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.D.N. (2014a) Subclass-based multi-task learning for Alzheimer's disease diagnosis Frontiers in Aging Neuroscience, 6.

  • Suk, H.-I., Lee, S.-W., Shen, D., & Initiative, A.s.D.N. (2014b). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suk, H.-I., Wee, C.-Y., Lee, S.-W., & Shen, D. (2014c) Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics, 9349, 1-19.

  • Suk, H.-I., Lee, S.-W., & Shen, D. (2015) A hybrid of deep network and hidden Markov model for MCI identification with resting-state fMRI. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Springer. p 573-580.

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B: Methodological, 58, 267–288.

  • Toussaint, P.-J., Maiz, S., Coynel, D., Doyon, J., Messé, A., de Souza, L. C., Sarazin, M., Perlbarg, V., Habert, M.-O., & Benali, H. (2014). Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. NeuroImage, 101, 778–786.

    Article  PubMed  Google Scholar 

  • Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study. Human Brain Mapping, 28, 967–978.

    Article  PubMed  Google Scholar 

  • Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Watts, D.J., Strogatz, S.H. (1998) Collective dynamics of ‘small-world’networks. nature, 393:440-442.

  • Wee, C.-Y., Yap, P.-T., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., Wang, L., & Shen, D. (2012). Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PloS One, 7, e37828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee, C.-Y., Yang, S., Yap, P.-T., & Shen, D. (2013) Temporally dynamic resting-state functional connectivity networks for early MCI identification. Machine Learning in Medical Imaging: Springer p 139–146.

  • Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., & Shen, D. (2014). Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure & Function, 219(2), 641–656.

    Article  Google Scholar 

  • Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., & Initiative, A.s.D.N. (2015). Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 10(2), 342–356.

  • Whitwell, J. L., Przybelski, S. A., Weigand, S. D., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Jack, C. R. (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain, 130, 1777–1786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31, 210–227.

    Article  Google Scholar 

  • Yu, R., Zhang, H., An, L., Chen, X., Wei, Z., Shen, D. (2016). Correlation-weighted sparse group representation for brain network construction in MCI classification. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016. Springer. P 37-45.

  • Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., & Initiative, A.s.D.N. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856–867.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Chen X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., Haller, S., Shen, D. (2016a). Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment. Journal of Alzheimers Disease, 54, 1095–1112.

  • Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., & Cichocki, A. (2016b). Sparse Bayesian classification of EEG for brain-Computer Interface. IEEE Transactions on Neural Networks and Learning Systems, 27(11), 2256–2267.

  • Zhang, Y., Wang, Y., Jin, J., & Wang, X. (2017). Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. International Journal of Neural Systems, 27, 1650032.

    Article  PubMed  Google Scholar 

  • Zhou, L., Wang, Y., Li, Y., Yap, P., & Shen, D. (2011). Hierarchical anatomical brain networks for MCI prediction: Revisiting volumetric measures. PloS One, 6(7), e21935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Dinggang Shen.

Ethics declarations

Funding

This work was supported in part by National Institutes of Health (EB006733, EB008374, AG041721, AG049371, AG042599, AG053867, and EB022880). Xiaobo Chen was also supported by National Natural Science Foundation of China (Grand No: 61203244), Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University)(MJUKF201724), and Talent Foundation of Jiangsu University (14JDG066).

Conflict of Interest

All the authors declare no conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all patients before the scan.

Additional information

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a Group/Institutional Author.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: www.loni.ucla.edu\ADNI\Collaboration\ADNI_Authorship_list.pdf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, H., Lee, SW. et al. Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification. Neuroinform 15, 271–284 (2017). https://doi.org/10.1007/s12021-017-9330-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-017-9330-4

Keywords

Navigation