Coproduct and Amalgamation of Deductive Systems by Means of Ordered Algebras | Logica Universalis Skip to main content
Log in

Coproduct and Amalgamation of Deductive Systems by Means of Ordered Algebras

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

We propose various methods for combining or amalgamating propositional languages and deductive systems. We make heavy use of quantales and quantale modules in the wake of previous works by the present and other authors. We also describe quite extensively the relationships among the algebraic and order-theoretic constructions and the corresponding ones based on a purely logical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Using a different symbol for this action would make the notations much heavier without helping the reading, so we rather preferred to use the same symbol of the product in the quantale, relying on the context and different sets of letters for scalars and “vectors” for the meaning of each of its occurrences. Whenever convenient, we shall also drop it.

  2. Products and coproducts in \(Q\text {-}\mathcal {M}\!\!\, od \) have the same object, namely, the Cartesian product with componentwise operations [30, Proposition 4.2.3].

  3. We recall that \( Fm _\mathcal {L}\) and \( Eq _\mathcal {L}\) can be thought of as the sets of, respectively, \(\{(0,1)\}\)-sequents and \(\{(1,1)\}\)-sequents.

References

  1. Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics. Math. Structures Comput. Sci. 3, 161–227 (1993)

    Article  MathSciNet  Google Scholar 

  2. Blok, W.J., Jónsson, B.: Equivalence of consequence operations. Studia Logica 83(1–3), 91–110 (2006)

    Article  MathSciNet  Google Scholar 

  3. Blyth, T.S., Janowitz, M.F.: Residuation Theory. Pergamon Press, Oxford (1972)

    MATH  Google Scholar 

  4. Berni-Canani, U., Borceux, F., Succi-Cruciani, R.: A theory of quantale sets. J. Pure Appl. Algebra 62, 123–136 (1989)

    Article  MathSciNet  Google Scholar 

  5. Borceux, F., Van Den Bossche, G.: An essay on non-commutative topology. Topol. Appl. 31, 203–223 (1989)

    Article  Google Scholar 

  6. Borceux, F., Cruciani, R.: Sheaves on a quantale. Cahiers Topologie Géom. Différentielle Catég. 34, 209–218 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Cintula, P., Gil-Férez, J., Moraschini, T., Paoli, F.: An abstract approach to consequence relations. Rev. Symbol. Logic 12(2), 331–371 (2019)

    Article  MathSciNet  Google Scholar 

  8. Coniglio, M.E., Miraglia, F.: Non-Commutative Topology and Quantales. Studia Logica 65, 223–236 (2000)

    Article  MathSciNet  Google Scholar 

  9. Czelakowski, J.: Equivalential logics (after 25 years of investigations). Rep. Math. Logic 38, 23–36 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Di Nola, A., Russo, C.: Łukasiewicz Transform and its application to compression and reconstruction of digital images. Inf. Sci. 177, 1481–1498 (2007)

    Article  Google Scholar 

  11. Font, J. M.: Abstract Algebraic Logic – An Introductory Textbook. College Publications, ISBN 978-1-84890-207-7, (2006)

  12. Galatos, N., Gil-Férez, J.: Modules over Quantaloids: Applications to the Isomorphism Problem in Algebraic Logic and \(\pi \)-institutions. J. Pure Appl. Algeb. 221(1), 1–24 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Galatos, N., Tsinakis, C.: Equivalence of consequence relations: an order-theoretic and categorical perspective. J. Symb. Logic 74(3), 780–810 (2009)

    Article  MathSciNet  Google Scholar 

  14. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50 (1987)

  15. Hofmann, K.H., Mislove, M.: Amalgamation in categories with concrete duals. Alg. Univ. 6, 327–347 (1976)

    Article  MathSciNet  Google Scholar 

  16. Howie, J.M.: Embedding theorems with amalgamation for semigroups. Proc. London Math. Soc. 3(12), 511–534 (1962)

    Article  MathSciNet  Google Scholar 

  17. Kimura, N.: On Semigroups. Ph.D. Thesis, Tulane University, (1957)

  18. Kruml, D., Paseka, J.: Algebraic and Categorical Aspects of Quantales. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  19. Łoś, J., Suszko, R.: Remarks on sentential logics. Proc. Kon. Nederl. Akad. van Wetenschappen Ser. A 61, 177–183 (1958)

    Article  MathSciNet  Google Scholar 

  20. Moore, D. J., Valckenborgh, F.: Operational Quantum Logic: A Survey and Analysis. In: K. Engesser, D. M. Gabbay and D. Lehmann (Eds.), Handbook of Quantum Logic and Quantum Structures – Quantum Logic, pp. 389–441, North-Holland, (2009)

  21. Moraschini, T.: The semantic isomorphism theorem in abstract algebraic logic. Ann. Pure Appl. Logic 167(12), 1298–1331 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mulvey, C.J.: Supplemento ai Rendiconti del Circolo Matematico di Palermo II(12), 99–104 (1986)

    Google Scholar 

  23. Mulvey, C. J., Nawaz, M.: Quantales: Quantale Sets. In: Theory and Decision Library Series B mathematics and statistics, Vol. 32, Kluwer Academic Publication, Dordrecht, (1995), pp. 159–217

  24. Nkuimi-Jugnia, C.: Amalgamation property and epimorphisms in the category of modules over a quantale. Rap. séminaire 303, Département de mathématique UCL (2000), pp. 1–8

  25. Paseka, J.: A note on nuclei of quantale modules. Cahiers Topologie Géom. Différentielle Catég. XLII I, 19–34 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Resende, P.: Quantales and observational semantics. In: Coecke, B., Moore, D., Wilce, A. (eds.) Current Research in Operational Quantum Logic: Algebras, Categories and Languages, vol. 111, pp. 263–288. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  27. Raftery, J.G.: Correspondences between gentzen and hilbert systems. J. Symbol. Logic 71(3), 903–957 (2006)

    Article  MathSciNet  Google Scholar 

  28. Renshaw, J.: Extension and amalgamation in monoids and semigroups. Proc. London Math. Soc. 3(52), 119–141 (1986)

    Article  MathSciNet  Google Scholar 

  29. Rosenthal, K. I.: Quantales and their applications. Longman Scientific and Technical, (1990)

  30. Russo, C.: Quantale Modules, with Applications to Logic and Image Processing. Ph.D. Thesis, University of Salerno – Italy, (2007)

  31. Russo, C.: Quantale Modules and their Operators, with Applications. J. Logic Comput. 20(4), 917–946 (2010)

    Article  MathSciNet  Google Scholar 

  32. Russo, C.: An order-theoretic analysis of interpretations among propositional deductive systems. Ann. Pure Appl. Logic 164(2), 112–130 (2013)

    Article  MathSciNet  Google Scholar 

  33. Russo, C.: Corrigendum to “An order-theoretic analysis of interpretations among propositional deductive systems” [Ann. Pure Appl. Logic 164 (2) (2013) 112-130]. Annals of Pure and Applied Logic 167 (3) (2016), 392–394

  34. Russo, C.: Quantales and their modules: projective objects, ideals, and congruences. South Am. J. Logic 2(2), 405–424 (2016)

    MathSciNet  Google Scholar 

  35. Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. J. Logic Comput. 9(2), 149–179 (1999)

    Article  MathSciNet  Google Scholar 

  36. Sernadas, A., Sernadas, C., Rasga, J.: On combined connectives. Logica Universalis 5(2), 205–224 (2011)

    Article  MathSciNet  Google Scholar 

  37. Solovyov, S.A.: On the category \(Q\)-Mod. Alg. Univ. 58, 35–58 (2008)

    Article  MathSciNet  Google Scholar 

  38. Tarski, A.: in collaboration with Mostowski, A., and Robinson, R. M.; Undecidable Theories. North-Holland, Amsterdam, (1953)

  39. Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Am. Math. Soc. 45, 335–354 (1939)

    Article  MathSciNet  Google Scholar 

  40. Wójcicki, R.: Theory of Logical Calculi- Basic Theory of Consequence Operations. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  41. Tholen, W.: Amalgamations in categories. Alg. Univ. 14, 391–397 (1982)

    Article  MathSciNet  Google Scholar 

  42. Yetter, D.N.: Quantales and (Noncommutative) Linear Logic. J. Symbolic Logic 55(1), 41–64 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Russo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper has been awarded the 2021 Newton da Costa Prize for Logic and will be presented at the 2nd World Logic Prizes Contest within the UNILOG 2022 conference, in Crete. This work was supported by the individual travel grant Professor Visitante no Exterior Sênior - Grant No. 88887.477515/2020-00, awarded by the Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior and the Universidade Federal da Bahia through the CAPES-PrInt UFBA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, C. Coproduct and Amalgamation of Deductive Systems by Means of Ordered Algebras. Log. Univers. 16, 355–380 (2022). https://doi.org/10.1007/s11787-022-00303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-022-00303-x

Keywords

Mathematics Subject Classification

Navigation