Abstract
In this paper, we consider a backward diffusion problem for a space-fractional diffusion equation. Such a problem is obtained from the classical diffusion equation in which the second-order space derivative is replaced with a Riesz–Feller derivative of order \(\alpha \in (0,2]\). The temperature is sought from a measured temperature history at a fixed time \(t=T\). This problem is ill-posed, i.e., the solution (if it exists) does not depend on the data. The simplified Tikhonov regularization method is proposed to solve this problem. Under the a priori bound assumptions for the exact solution, the convergence estimate is presented. Moreover, a posteriori parameter choice rule is proposed and the convergence estimate is also obtained. All estimates are Hölder type. Numerical examples are presented to illustrate the validity and effectiveness of this method.
Similar content being viewed by others
References
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of their Applications (Mathematics in Science and Engineering vol 198). Academic, San Diego (1999)
Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284, 376–384 (2000)
Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216, 3329–3334 (2010)
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
Miller, K.S., Ross, B.: An Introduction to The Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of l’evy motion. Water Resour. Res. 36, 1413–1423 (2000)
Elwakil, S.A., Zahran, M.A., Abulwafa, E.M.: Fractional (space-time) diffusion equation on comb-like model. Chaos Soliton Fractals 20, 1113–1120 (2004)
Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)
Momani, S., Odibat, Z., Erturk, V.S.: Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation. Phys. Lett. A 370, 379–387 (2007)
Ray, S.S.: A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends. Appl. Math. Comput. 202, 544–549 (2008)
Ray, S.S., Chaudhuri, K.S., Bera, R.K.: Application of modified decomposition method for the analytical solution of space fractional diffusion equation. Appl. Math. Comput. 196, 294–302 (2008)
Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)
Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)
Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, 521–541 (2002)
Gorenflo, R., Mainardi, F.: Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, 400–415 (2009)
Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Fractional diffusion: probability distributions and random walk models. Phys. A 305, 106–112 (2002)
Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for one-dimensional fractional diffusion equation. Inverse Probl. 16, 115002 (2009). (16pp)
Liu, J.J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788 (2010)
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)
Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53(10), 1492–1501 (2007)
Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56(9), 2371–2381 (2008)
Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36, 1344–1352 (2012)
Qian, Z.: Optimal modified method for a fractional-diffusion inverse heat conduction problem. Inverse Probl. Sci. Eng. 18(4), 521–533 (2010)
Zheng, G.H., Wei, T.: A new regularization method for solving a time-fractional inverse diffusion problem. J. Math. Anal. Appl. 378(2), 418–431 (2011)
Zheng, G.H., Wei, T.: Spectral regularization method for the time fractional inverse advection-dispersion equation. Math. Comput. Simul. 81, 37–51 (2010)
Zheng, G.H., Wei, T.: Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. 26, 115017 (2010). (22pp)
Zheng, G.H., Wei, T.: A new regularization method for a Cauchy problem of the time fractional diffusion equation. Adv. Comput. Math. 36, 377–398 (2012)
Zheng, G.H., Wei, T.: Spectral regularization method for solving a time-fractional inverse diffusion problem. Appl. Math. Comput. 218, 396–405 (2011)
Xiong, X.T., Guo, H.B., Liu, X.H.: An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 236, 4474–4484 (2012)
Xiong, X.T., Zhou, Q., Hon, Y.C.: An inverse problem for fractional diffusion equation in 2- dimensional case: Stability analysis and regularization. J. Math. Anal. Appl. 393, 185–199 (2012)
Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)
Carasso, A.: Determining surface temperature from interior observations. SIAM J. Appl. Math. 42, 558–574 (1982)
Fu, C.L.: Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. J. Comput. Appl. Math. 167, 449–463 (2004)
Cheng, W., Fu, C.L., Qian, Z.: A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem. Math. Comput. Simul. 75, 97–112 (2007)
Cheng, W., Fu, C.L., Qian, Z.: Two regularization methods for a spherically symmetric inverse heat conduction problem. Appl. Math. Model. 32, 432–442 (2008)
Feng, X.L., Fu, C.L., Cheng, H.: A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl. Math. Model. 35, 3301–3315 (2011)
Yang, F., Fu, C.L.: A simplified Tikhonov regularization method for determining the heat source. Appl. Math. Model. 34, 3286–3299 (2010)
Yang, F., Fu, C.L.: The method of simplified Tikhonov regularization for dealing with the inverse time-dependent heat source problem. Comput. Math. Appl. 60, 1228–1236 (2010)
Yang, F., Fu, C.L.: Two regularization methods for identification of the heat source depending only on spatial variable for the heat equation. J. Inverse Ill-Posed Probl. 17, 815–830 (2009)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problem. Kluwer Academic, Boston (1996)
Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
The project is supported by the National Natural Science Foundation of China (No. 11561045), the Doctor Fund of Lan Zhou University of Technology.
Rights and permissions
About this article
Cite this article
Yang, F., Li, XX., Li, DG. et al. The Simplified Tikhonov Regularization Method for Solving a Riesz–Feller Space-Fractional Backward Diffusion Problem. Math.Comput.Sci. 11, 91–110 (2017). https://doi.org/10.1007/s11786-017-0292-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-017-0292-6
Keywords
- Space-fractional backward diffusion problem
- Simplified Tikhonov regularization
- A posteriori parameter choice
- Error estimate
- Ill-posed problem