The Simplified Tikhonov Regularization Method for Solving a Riesz–Feller Space-Fractional Backward Diffusion Problem | Mathematics in Computer Science Skip to main content
Log in

The Simplified Tikhonov Regularization Method for Solving a Riesz–Feller Space-Fractional Backward Diffusion Problem

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

In this paper, we consider a backward diffusion problem for a space-fractional diffusion equation. Such a problem is obtained from the classical diffusion equation in which the second-order space derivative is replaced with a Riesz–Feller derivative of order \(\alpha \in (0,2]\). The temperature is sought from a measured temperature history at a fixed time \(t=T\). This problem is ill-posed, i.e., the solution (if it exists) does not depend on the data. The simplified Tikhonov regularization method is proposed to solve this problem. Under the a priori bound assumptions for the exact solution, the convergence estimate is presented. Moreover, a posteriori parameter choice rule is proposed and the convergence estimate is also obtained. All estimates are Hölder type. Numerical examples are presented to illustrate the validity and effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of their Applications (Mathematics in Science and Engineering vol 198). Academic, San Diego (1999)

    MATH  Google Scholar 

  3. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284, 376–384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216, 3329–3334 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  6. Miller, K.S., Ross, B.: An Introduction to The Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  7. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of l’evy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  8. Elwakil, S.A., Zahran, M.A., Abulwafa, E.M.: Fractional (space-time) diffusion equation on comb-like model. Chaos Soliton Fractals 20, 1113–1120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Momani, S., Odibat, Z., Erturk, V.S.: Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation. Phys. Lett. A 370, 379–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ray, S.S.: A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends. Appl. Math. Comput. 202, 544–549 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Ray, S.S., Chaudhuri, K.S., Bera, R.K.: Application of modified decomposition method for the analytical solution of space fractional diffusion equation. Appl. Math. Comput. 196, 294–302 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, 521–541 (2002)

    Article  MATH  Google Scholar 

  16. Gorenflo, R., Mainardi, F.: Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, 400–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Fractional diffusion: probability distributions and random walk models. Phys. A 305, 106–112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for one-dimensional fractional diffusion equation. Inverse Probl. 16, 115002 (2009). (16pp)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, J.J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53(10), 1492–1501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56(9), 2371–2381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36, 1344–1352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qian, Z.: Optimal modified method for a fractional-diffusion inverse heat conduction problem. Inverse Probl. Sci. Eng. 18(4), 521–533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zheng, G.H., Wei, T.: A new regularization method for solving a time-fractional inverse diffusion problem. J. Math. Anal. Appl. 378(2), 418–431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zheng, G.H., Wei, T.: Spectral regularization method for the time fractional inverse advection-dispersion equation. Math. Comput. Simul. 81, 37–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng, G.H., Wei, T.: Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. 26, 115017 (2010). (22pp)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, G.H., Wei, T.: A new regularization method for a Cauchy problem of the time fractional diffusion equation. Adv. Comput. Math. 36, 377–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, G.H., Wei, T.: Spectral regularization method for solving a time-fractional inverse diffusion problem. Appl. Math. Comput. 218, 396–405 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Xiong, X.T., Guo, H.B., Liu, X.H.: An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 236, 4474–4484 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xiong, X.T., Zhou, Q., Hon, Y.C.: An inverse problem for fractional diffusion equation in 2- dimensional case: Stability analysis and regularization. J. Math. Anal. Appl. 393, 185–199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Carasso, A.: Determining surface temperature from interior observations. SIAM J. Appl. Math. 42, 558–574 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fu, C.L.: Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. J. Comput. Appl. Math. 167, 449–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cheng, W., Fu, C.L., Qian, Z.: A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem. Math. Comput. Simul. 75, 97–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Cheng, W., Fu, C.L., Qian, Z.: Two regularization methods for a spherically symmetric inverse heat conduction problem. Appl. Math. Model. 32, 432–442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Feng, X.L., Fu, C.L., Cheng, H.: A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl. Math. Model. 35, 3301–3315 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, F., Fu, C.L.: A simplified Tikhonov regularization method for determining the heat source. Appl. Math. Model. 34, 3286–3299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, F., Fu, C.L.: The method of simplified Tikhonov regularization for dealing with the inverse time-dependent heat source problem. Comput. Math. Appl. 60, 1228–1236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, F., Fu, C.L.: Two regularization methods for identification of the heat source depending only on spatial variable for the heat equation. J. Inverse Ill-Posed Probl. 17, 815–830 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problem. Kluwer Academic, Boston (1996)

    Book  MATH  Google Scholar 

  43. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

The project is supported by the National Natural Science Foundation of China (No. 11561045), the Doctor Fund of Lan Zhou University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Li, XX., Li, DG. et al. The Simplified Tikhonov Regularization Method for Solving a Riesz–Feller Space-Fractional Backward Diffusion Problem. Math.Comput.Sci. 11, 91–110 (2017). https://doi.org/10.1007/s11786-017-0292-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-017-0292-6

Keywords

Mathematics Subject Classification

Navigation