Optimizing nonlinear activation function for convolutional neural networks | Signal, Image and Video Processing Skip to main content
Log in

Optimizing nonlinear activation function for convolutional neural networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Activation functions play a critical role in the training and performance of the deep convolutional neural networks. Currently, the rectified linear unit (ReLU) is the most commonly used activation function for the deep CNNs. ReLU is a piecewise linear function that will output the input directly if it is positive, otherwise, it will output zero. In this work, we propose a novel approach to generalize the ReLU activation function using multiple learnable slope parameters. These learnable slope parameters are optimized for every channel, which leads to the learning of a more generalized activation function (a variant of ReLU) corresponding to each channel. This activation is named as fully parametric rectified linear unit (FReLU) and trained using an alternate optimization technique by learning one set of parameters, keeping another set of parameters frozen. Our experiments show that the method outperforms ReLU and its other variant activation functions and also generalizes over various tasks such as image classification, object detection and action recognition in videos. The Top-1 classification accuracy of FReLU on ImageNet improves by 3.75% for MobileNet and \(\sim \) 2% for ResNet-50 over ReLU. We also provide various analyses for better interpretability of our proposed activation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. arXiv:1412.6830 (2014)

  2. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv:1511.07289 (2015)

  3. El Jaafari, I., Ellahyani, A., Charfi, S.: Parametric rectified nonlinear unit (PRenu) for convolution neural networks . SIViP 15, 241–246 (2021). https://doi.org/10.1007/s11760-020-01746-9

  4. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

    Article  Google Scholar 

  5. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6202–6211 (2019)

  6. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv:1312.6082 (2013)

  7. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. arXiv:1302.4389 (2013)

  8. Goyal, R., Kahou, S.E., Michalski, V., Materzynska, J., Westphal, S., Kim, H., Haenel, V., Fruend, I., Yianilos, P., Mueller-Freitag, M., et al.: The “something something” video database for learning and evaluating visual common sense. In: ICCV, vol. 1, p. 5 (2017)

  9. Hayou, S., Doucet, A., Rousseau, J.: On the impact of the activation function on deep neural networks training. In: Proceedings of the International Conference on Machine Learning (2019)

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  14. Jain, P., Kar, P., et al.: Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10(3–4), 142–336 (2017)

    Article  Google Scholar 

  15. Jiang, X., Pang, Y., Li, X., Pan, J., Xie, Y.: Deep neural networks with elastic rectified linear units for object recognition. Neurocomputing 275, 1132–1139 (2018)

    Article  Google Scholar 

  16. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 972-981 (2017)

  17. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep, Citeseer (2009)

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6) 84–90 (2017). https://doi.org/10.1145/3065386

  19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  20. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  21. Li, Y., Fan, C., Li, Y., Wu, Q., Ming, Y.: Improving deep neural network with multiple parametric exponential linear units. Neurocomputing 301, 11–24 (2018)

    Article  Google Scholar 

  22. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7083–7093 (2019)

  23. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer (2014)

  24. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)

  25. Misra, D.: Mish: A self regularized non-monotonic neural activation function. arXiv:1908.08681 (2019)

  26. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

  27. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. https://arxiv.org/pdf/1710.05941.pdf (2018)

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

  30. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

  31. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  32. Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training neural networks without gradients: A scalable admm approach. In: International Conference on Machine Learning, pp. 2722–2731 (2016)

  33. Trottier, L., Gigu, P., Chaib-draa, B., et al.: Parametric exponential linear unit for deep convolutional neural networks. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 207–214. IEEE (2017)

  34. Urban, G., Geras, K.J., Kahou, S.E., Aslan, O., Wang, S., Caruana, R., Mohamed, A., Philipose, M., Richardson, M.: Do deep convolutional nets really need to be deep and convolutional? In: International Conference on Learning Representations (2017)

  35. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv:1505.00853 (2015)

  36. Yang, C., Xu, Y., Shi, J., Dai, B., Zhou, B.: Temporal pyramid network for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 591–600 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munender Varshney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, M., Singh, P. Optimizing nonlinear activation function for convolutional neural networks. SIViP 15, 1323–1330 (2021). https://doi.org/10.1007/s11760-021-01863-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01863-z

Keywords

Navigation