Abstract
In order to interpret ultrasound images, it is important to understand their formation and the properties that affect them, especially speckle noise. This image texture, or speckle, is a correlated and multiplicative noise that inherently occurs in all types of coherent imaging systems. Indeed, its statistics depend on the density and on the type of scatterers in the tissues. This paper presents a new method for echocardiographic images segmentation in a variational level set framework. A partial differential equation-based flow is designed locally in order to achieve a maximum likelihood segmentation of the region of interest. A Rayleigh probability distribution is considered to model the local B-mode ultrasound images intensities. In order to confront more the speckle noise and local changes of intensity, the proposed local region term is combined with a local phase-based geodesic active contours term. Comparison results on natural and simulated images show that the proposed model is robust to attenuations and captures well the low-contrast boundaries.
Similar content being viewed by others
References
Ahn, C.Y., Jung, Y.M., Kwon, O.I., Seo, J.K.: Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition. Pattern Recognit. 45(9), 3490–3500 (2012)
Alessandrini, M., Basarab, A., Liebgott, H., Bernard, O.: Myocardial motion estimation from medical images using the monogenic signal. IEEE Trans. Image Process. 22(3), 1084–1095 (2013). https://doi.org/10.1109/TIP.2012.2226903
Belaid, A., Boukerroui, D.: \(\alpha \) scale spaces filters for phase based edge detection in ultrasound images. In: IEEE International Symposium on Biomedical Imaging, pp. 1247–1250. Beijing, China (2014)
Belaid, A., Boukerroui, D.: A new generalised \(\alpha \) scale spaces quadrature filters. Pattern Recognit. 47(10), 3209–3224 (2014)
Belaid, A., Boukerroui, D., Maingourd, Y., Lerallut, J.F.: Implicit active contours for ultrasound images segmentation driven by phase information and local maximum likelihood, pp. 630–635. Chicago, IL, USA (2011)
Belaid, A., Boukerroui, D., Maingourd, Y., Lerallut, J.F.: Phase based level set segmentation of ultrasound images. IEEE Trans. Inf. Technol. Biomed. 15(1), 138–147 (2011)
Bosch, J., Mitchell, S., Lelieveldt, B.P., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Med. Imaging 21(11), 1373–1383 (2002)
Boukerroui, D.: A local Rayleigh model with spatial scale selection for ultrasound image segmentation. In: British Machine Vision Conference, BMVC 2012, Surrey, UK, September 3–7, 2012, pp. 1–12 (2012)
Boukerroui, D., Baskurt, A., Noble, J.A., Basset, O.: Segmentation of ultrasound images: multiresolution 2D and 3D algorithm based on global and local statistics. Pattern Recognit. Lett. 24(4–5), 779–790 (2003)
Boukerroui, D., Noble, J.A., Robini, M.C., Brady, J.: Enhancement of contrast regions in sub-optimal ultrasound images with application to echocardiography. Ultrasound Med. Biol. 27(12), 1583–1594 (2001)
Brox, T., Cremers, D.: On local region models and a statistical interpretation of the piecewise smooth mumford-shah functional. Int. J. Comput. Vis. 84(2), 184–193 (2009)
Chesnaud, C., Refregier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1145–1157 (1999)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Chalana, V., Linker, D.T., Haynor, D.R., Kim, Y.: A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans. Med. Imaging 15(3), 290–298 (1996)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)
Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)
Dietenbeck, T., Alessandrini, M., Barbosa, C., D’Hooge, J., Friboulet, D., Bernard, O.: Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. Med. Image Anal. 16(2), 386–401 (2012). https://doi.org/10.1016/j.media.2011.10.003
Drukker, K., Giger, M.L., Mendelson, E.B.: Computerized detection and classification of cancer on breast ultrasound. Acad. Radiol. 11(5), 526–535 (2004)
Dutt, V., Greenleaf, J.F.: Ultrasound echo envelope analysis using a homodyned K distribution signal model. Ultrason. Imaging 16(4), 265–287 (1994)
Eltoft, T.: The Rician inverse gaussian distribution: a new model for non-rayleigh signal amplitude statistics. IEEE Trans. Image Process. 14(11), 1722–1735 (2005)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(49), 3136–3144 (2001)
Felsberg, M., Sommer, G.: The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21(1), 5–26 (2004)
Fernandes, D., Sekine, M.: Suppression of Weibull radar clutter. IEICE Trans. Commun. E76–B, 1231–1235 (1993)
Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)
Jacob, G., Noble, J., Behrenbruch, C., Kelion, A., Banning, A.: A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. IEEE Trans. Med. Imaging 21(3), 226–238 (2002)
Jardim, S., Figueiredo, M.: Segmentation of fetal ultrasound images. Ultrasound Med. Biol. 31(2), 243–250 (2005)
Jensen, J.A.,: Field: a program for simulating ultrasound systems In: 10th Nordic-Baltic Conference on Biomedical Imaging, vol .34, pp. 351–353 (1996)
Kovesi, P.: Image features from phase congruency. Videre J. Comput. Vis. Res. 1(3), 1–26 (1999)
Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)
Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 1–7. IEEE Computer Society, Washington (2007)
Lin, N., Yu, W., Duncan, J.S.: Combinative multi-scale level set framework for echocardiographic image segmentation. Med. Image Anal. 7, 529–537 (2003)
Martin-Fernandez, M., Alberola-Lopez, C.: An approach for contour detection of human kidneys from ultrasound images using markov random fields and active contours. Med. Image Anal. 9(1), 21–23 (2005)
Mignotte, M., Collet, C., Pérez, P., Bouthemy, P.: Three-class Markovian segmentation of high-resolution sonar images. CVIU 76(3), 191–204 (1999)
Morrone, M.C., Burr, D.C.: Feature detection in human vision: a phase-dependent energy model. In: Proceedings of the Royal Society of London, Series B, vol. 235, pp. 221–245 (1988)
Mulet-Parada, M., Noble, J.A.: 2D+T acoustic boundary detection in echocardiography. In: MICCAI, pp. 806–813. Springer, London (1998)
Mulet-Parada, M., Noble, J.A.: 2D+ T acoustic boundary detection in echocardiography. Med. Image Anal. 4(1), 21–30 (2000)
Noble, J.A.: Ultrasound image segmentation and tissue characterization. Proc. IMechE H J. Eng. Med. 224(2), 307–316 (2010)
Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)
Papadogiorgaki, M., Mezaris, V., Chatzizisis, Y.S., Giannoglou, G.D., Kompatsiaris, I.: Image analysis techniques for automated IVUS contour detection. Ultrasound Med. Biol. 34(9), 1482–1498 (2008)
Paragios, N., Jolly, M.P., Taron, M., Ramaraj, R.: Active shape models & segmentation of the left ventricle in echocardiography. In: International Conference on Scale Space Theories and PDEs methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 131–142 (2005)
Porras, A., Alessandrini, M., De Craene, M., Duchateau, N., Sitges, M., Bijnens, B., Delingette, H., Sermesant, M., D’Hooge, J., Frangi, A., Piella, G.: Improved myocardial motion estimation combining tissue Doppler and B-mode echocardiographic images. IEEE Trans. Med. Imaging 33(11), 2098–2106 (2014). https://doi.org/10.1109/TMI.2014.2331392
Raju, B.I., Srinivasan, M.A.: Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 871–882 (2002)
Roy, S., Carass, A., Bazin, P.L., Resnick, S., Prince, J.L.: Consistent segmentation using a Rician classifier. Med. Image Anal. 16(6), 524–535 (2012)
Sarti, A., Corsi, C., Mazzini, E., Lamberti, C.: Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(6), 947–960 (2005)
Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 727–736 (2000)
Slabaugh, G., Unal, G., Wels, M., Fang, T., Rao, B.: Statistical region-based segmentation of ultrasound images. Ultrasound Med. Biol. 35(5), 781–795 (2009)
Steen, E., Olstad, B.: Scale-space and boundary detection in ultrasonic imaging using nonlinear signal-adaptive anisotropic diffusion. In: Proceedings of SPIE Medical Imaging: Image processing (1994)
Song, Z., Awate, S.P., Licht, D.J., Gee J.C. :Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. In: Proceedings of Medical Image Computing and Computer Assisted Intervention, pp. 883-890 (2007)
Tao, Z., Tagare, H.: Tunneling descent level set segmentation of ultrasound images. In: IPMI, pp. 750–761 (2005)
Tohka, J., Dinov, I.D., Shattuck, D.W., Toga, A.W.: Brain MRI tissue classification based on local Markov random fields. Magn. Reson. Imaging 28(11), 557–573 (2010)
Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local gaussian distribution fitting energy. Signal Process. 89, 2435–2447 (2009)
Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint. Med. Image Anal. 14(3), 429–448 (2010)
Acknowledgements
The authors would like to thank Rabeh Djabri for English proofreading and Dr. Mathiron and Dr. Levy for their help in the clinical evaluation. Part of this work was funded by the Regional Council of Picardie and European Union/FEDER.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Belaid, A., Boukerroui, D. Local maximum likelihood segmentation of echocardiographic images with Rayleigh distribution. SIViP 12, 1087–1096 (2018). https://doi.org/10.1007/s11760-018-1251-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-018-1251-7