No-reference image quality assessment based on hybrid model | Signal, Image and Video Processing Skip to main content

Advertisement

Log in

No-reference image quality assessment based on hybrid model

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The aim of research on the no-reference image quality assessment problem is to design models that can predict the quality of distorted images consistently with human visual perception. Due to the little prior knowledge of the images, it is still a difficult problem. This paper proposes a computational algorithm based on hybrid model to automatically extract vision perception features from raw image patches. Convolutional neural network (CNN) and support vector regression (SVR) are combined for this purpose. In the hybrid model, the CNN is trained as an efficient feature extractor, and the SVR performs as the regression operator. Extensive experiments demonstrate very competitive quality prediction performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thung, K.H. et al.: A survey of image quality measures. In: Proceedings of International Conference for Technical Postgraduates (TECHPOS), p. 1–4 (2009)

  2. Zhao, B.J., et al.: Image quality evaluation method based on human visual system. Chin. J. Electron. 19(1), 129–132 (2010)

    Google Scholar 

  3. Eskicioglu, A.M., et al.: Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)

    Article  Google Scholar 

  4. Gu, K., Wang, S.Q., et al.: Content-weighted mean-squared error for quality assessment of compressed images. Signal Image Video Process. 10(5), 803–810 (2016)

    Article  Google Scholar 

  5. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  6. Zhang, L., Zhang, D., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gu, K., Wang, S.Q., et al.: Analysis of distortion distribution for pooling in image quality prediction. IEEE Trans. Broadcasti. 62(2), 446–456 (2016)

    Article  Google Scholar 

  8. Narwaria, M., Mantiuk, R., Callet, P.L.: HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images. J. Electron. Imaging 24(1), 010501–010501 (2015)

    Article  Google Scholar 

  9. Narwaria, M., Callet. P.L..: On improving the pooling in HDR-VDP-2 towards better HDR perceptual quality assessment. In: Proceedings of the SPIE, 9014(10) (2014)

  10. Moorthy, A.K., et al.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  11. Moorthy, A.K., et al.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  12. Narwaria, M., Lin, W.S., McLoughlin, I.V.: Fourier transform based scalable image quality measure. IEEE Trans. Image Process. 21(8), 3364–3377 (2012)

    Article  MathSciNet  Google Scholar 

  13. Narwaria, M., Lin, W.S.: SVD-based quality metric for image and video using machine learning. IEEE Trans. Syst. Cybern. (Part B) 42(2), 347–364 (2012)

    Article  Google Scholar 

  14. Narwaria, M., Lin, W.S., Enis Cetin, A.: Scalable image quality assessment with 2D mel-cepstrum and machine learning approach. Pattern Recognit. 45, 299–313 (2012)

  15. Saad, M., et al.: Blind image quality assessment: an natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  Google Scholar 

  16. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. IEEE Conf. Comput. Vis. Pattern Recognit. 157(10), 1098–1105 (2012)

    Google Scholar 

  17. Mittal, A., Moorthy, A., Bovik, A.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kang, L. et al.: Convolutional neutral networks for no-reference image quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)

  19. Li, J., Zou, L., Deng, D., et al.: No-reference image quality assessment using Prewitt magnitude based on convolutional neural networks. Signal Image Video Process. 10(4), 609–616 (2016)

    Article  Google Scholar 

  20. Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)

    Article  MathSciNet  Google Scholar 

  21. Girshick, R. et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  22. Zhang, Y., Sohn, K., Villegas, R., Pan, G., Lee, H.: Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

  23. Lauer, F., et al.: A trainable feature extractor for handwritten digit recognition. Pattern Recognit. 40(6), 1816–1824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Scholkopf, B., et al.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)

    Article  Google Scholar 

  25. Niu, X.X., et al.: A novel hybrid CNN/SVM classifier for recognizing handwritten digits. Pattern Recognit. 45(4), 1318–1325 (2012)

    Article  Google Scholar 

  26. Sheikh, H.R. et al.: LIVE image quality assessment database release2. http://live.ece.utexas.edu/research/quality

  27. Larson, E.C., et al.: Most apparent distortion: full reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006–011006 (2010)

    Article  MathSciNet  Google Scholar 

  28. VQEG: Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment -Phase II. August 2003. http://www.vqeg.org/

Download references

Acknowledgements

This work has been supported by Natural Science Foundation of China (No. 61501334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yan, J., Deng, D. et al. No-reference image quality assessment based on hybrid model. SIViP 11, 985–992 (2017). https://doi.org/10.1007/s11760-016-1048-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1048-5

Keywords

Navigation