H.264/AVC video watermarking for active fingerprinting based on Tardos code | Signal, Image and Video Processing Skip to main content
Log in

H.264/AVC video watermarking for active fingerprinting based on Tardos code

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a novel approach for active fingerprinting of state-of-the-art video codec H.264/AVC. Tardos probabilistic fingerprinting code is embedded in H.264/AVC video signals using spread spectrum watermarking technique in both luma and chroma. Tardos code is embedded in intra as well as inter frames. The embedding has been performed in the nonzero quantized transformed coefficients, which are above a certain threshold while taking into account the reconstruction loop, to avoid the uncontrollable increase in bitrate of video bitstream. A comprehensive analysis of payload and PSNR trade-off is presented for the benchmark video sequences. Different linear and nonlinear collusion attacks have been performed in the pixel domain to show the robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. It links \(\epsilon _{1}\) and threshold.

  2. Normally, in traitor tracing, \(\epsilon _{1} = 10^{-6}\). To reduce code length and hence the simulation time, we have selected \(\epsilon _{1} = 10^{-3}\).

References

  1. Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capacity. In: Proceedings of Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 336–345. Philadelphia, PA, USA (2009)

  2. Anthapadmanabhan, N., Barg, A., Dumer, I.: Fingerprinting capacity under the marking assumption. In: Proceedings of IEEE International Symposium on Information Theory, pp. 706–710. Nice, France (2007)

  3. Anthapadmanabhan, N., Barg, A., Dumer, I.: On the fingerprinting capacity under the marking assumption. IEEE Trans. Inf. Theory 54(6), 2678–2689 (2008)

    Article  MathSciNet  Google Scholar 

  4. Blayer, O., Tassa, T.: Improved versions of Tardos’ fingerprinting scheme. Design. Codes Cryptogr. 48(1), 79–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cérou, F., Furon, T., Guyader, A.: Experimental assessment of the reliability for watermarking and fingerprinting schemes. EURASIP J. Inf. Secur. 6, 1–12 (2008)

    Article  Google Scholar 

  7. Cox, I., Kilian, J., Leighton, F., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6, 1673–1687 (1997)

    Article  Google Scholar 

  8. Desoubeaux, M., Le Guelvouit, G., Puech, W.: Probabilistic fingerprinting codes used to detect traitor zero-bit watermark. In: Proceedings of SPIE Electronic Imaging, San Francisco, CA, USA (2011)

  9. H264: Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496–10 AVC). Technical Report, Joint Video Team (JVT), Doc. JVT-G050 (2003)

  10. Hartung, F., Su, J., Girod, B.: Spread spectrum watermarking: malicious attacks and counterattacks. In: Proceedings of SPIE: Security and Watermarking of Multimedia Contents, pp. 147–158. San Jose, CA (1999)

  11. He, S., Wu, M.: Joint coding and embedding techniques for multimedia fingerprinting. IEEE Trans. Inf. Forensic Secur. 1(2), 231–247 (2006)

    Article  Google Scholar 

  12. Langelaar, G., Lagendijk, R.: Optimal differential energy watermarking of DCT encoded images and video. IEEE Trans. Image Process. 10, 148–158 (2001)

    Article  MATH  Google Scholar 

  13. Lin, W., He, S., Bloom, J.: Performance study and improvement on ECC-based binary anti-collusion forensic code for multimedia. In: Proceedings of ACM Workshop on Multimedia and Security, pp. 93–98. New York, NY, USA (2009)

  14. Lu, C., Chen, J., Fan, K.: Real-time frame-dependent video watermarking in VLC domain. Signal Process. Image Commun. 20(7), 624–642 (2005)

    Article  Google Scholar 

  15. Malvar, H., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-complexity transform and quantization in H.264/AVC. IEEE Trans. Circuit. Syst. Video Technol. 13(7), 598–603 (2003)

    Article  Google Scholar 

  16. Shahid, Z., Chaumont, M., Puech, W.: Spread spectrum-based watermarking for tardos code-based fingerprinting for H.264/AVC video. In: Proceedings of IEEE International Conference on Image Processing, pp. 2105–2108. Hong Kong (2010)

  17. Skoric, B., Katzenbeisser, S., Celik, M.: Symmetric tardos fingerprinting codes for arbitrary alphabet sizes. Design. Codes Cryptogr. 46, 137–166 (2008)

    Article  MathSciNet  Google Scholar 

  18. Skoric, B., Vladimirova, T., Celik, M., Talstra, J.: Tardos Fingerprinting is Better Than We Thought. CoRR abs/cs/0607131 (2006)

  19. Skoric, B., Vladimirova, T., Celik, M., Talstra, J.: Tardos fingerprinting is better than we thought. IEEE Trans. Inf. Theory 54(8), 3663–3676 (2008)

    Article  MathSciNet  Google Scholar 

  20. Standard, C.: Digital Cinema Initiatives. LLC. Digital Cinema System Specification v1.1. Technical Report (2007)

  21. Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of ACM Symposium on Theory of Computing, pp. 116–125. New York, NY, USA (2003)

  22. Trappe, W., Wu, M., Wang, Z., Liu, L.: Anti-collusion fingerprinting for multimedia. IEEE Trans. Signal Process. 51, 1069–1087 (2003)

    Article  MathSciNet  Google Scholar 

  23. Wiegand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  24. Xie, F., Furon, T., Fontaine, C.: On-off keying modulation and tardos fingerprinting. In: Proceedings of ACM Workshop on Multimedia and Security, pp. 101–106. New York, NY, USA (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Puech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahid, Z., Chaumont, M. & Puech, W. H.264/AVC video watermarking for active fingerprinting based on Tardos code. SIViP 7, 679–694 (2013). https://doi.org/10.1007/s11760-013-0483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0483-9

Keywords