Lighting estimation of a convex Lambertian object using weighted spherical harmonic frames | Signal, Image and Video Processing Skip to main content
Log in

Lighting estimation of a convex Lambertian object using weighted spherical harmonic frames

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

An explicit lighting estimation from a single image of Lambertian objects is influenced by two factors: data incompletion and noise contamination. Measurement of lighting consistency purely using the orthogonal spherical harmonic basis cannot achieve an accurate estimation. We present a novel signal-processing framework to represent the lighting field. We construct a weighted spherical harmonic frame with geometric symmetry on the sphere \({S^2}\). Weighted spherical harmonic frames are defined over the generating rotation matrices about symmetry axes of finite symmetry subgroups of \(SO(3)\), and the generating functions are weighted spherical harmonic basis functions. Compared with the orthogonal spherical harmonic basis, the redundant weighted spherical harmonic frames not only describe the multidirectional lighting distribution intuitively, but also resist the noise theoretically. Subsequently, we analyze the relationship of the irradiance to the incoming radiance in terms of weighted spherical harmonic frames and reconstruct the lighting function filtered by the Lambertian BRDF (bidirectional reflectance distribution function). The experiments show that the frame coefficients of weighted spherical harmonic frames can better characterize the complex lighting environments finely and robustly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The original subjects correspond to (a); the rotated subjects are (b–d). In Fig. 3, \(Y_{1, 0}\) is demonstrated how to rotate in the \(z\)\(y\)\(z\) Euler angles system.

References

  1. http://ict.debevec.org/debevec/Probes/

  2. http://dativ.at/lightprobes/index.html

  3. Bachoc, C., Ehler, M.: Tight \(p\)-fusion frames. Appl. Comput. Harmon. Anal. 142(3), 645C659 (2012)

    Google Scholar 

  4. Balazs, P., Antoine, J., Gryboś, A.: Weighted and controlled frames: Mutual relationship and first numerical properties. Int. J. Wavelets Multiresolut. Inf. Process. 8(01), 109–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)

    Article  Google Scholar 

  6. Blanz, V., Thomas, V.: A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th Annual Conference on Computer graphics and Interactive Techniques, SIGGRAPH ’99, pp. 187–194 (1999)

  7. Brunelli, R., Messelodi, S.: Robust estimation of correlation with applications to computer vision. Pattern Recognit. 28(6), 833–841 (1995)

    Article  Google Scholar 

  8. Cands, E., Donoho, D.: New tight frames of curvelets and optimal representations of objects with piecewise \({C^2}\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2003)

    Article  Google Scholar 

  9. Casazza, P., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25(1), 114–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2002)

  11. Chung, M., Dalton, K., Shen, L., Evans, A., Davidson, R.: Weighted fourier series representation and its application to quantifying the amount of gray matter. IEEE Trans. Med. Imaging 26(4), 566–581 (2007)

    Article  Google Scholar 

  12. Daubechies, I. (ed.): Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  13. Daubechies, I., Han, B.: The canonical dual frame of a wavelet frame. Appl. Comput. Harmon. Anal. 12(3), 269–285 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dror, R., Willsky, A., Willsky, A.: Statistical characterization of real-world illumination. J. Vis. 4(9), 821–837 (2004)

    Article  Google Scholar 

  15. Duffin, R., Schaeffer, A.: A class of nonharmonic fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Google Scholar 

  16. Ehler, M.: Random tight frames. J. Fourier Anal. Appl. 18(1), 1–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ehler, M., Okoudjou, K.: Minimization of the probabilistic \(p\)-frame potential. J. Stat. Plan. Inference 142(3), 645–659 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eldar, Y., Bolcskei, H.: Geometrically uniform frames. IEEE Trans. Inf. Theory 49(4), 993–1006 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goyal, V., Vetterli, M., Thao, N.: Quantized overcomplete expansions in \({R^N}\): Analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ivanic, J., Ruedenberg, K.: Rotation matrices for real spherical harmonics. Direct determination by recursion. J. Phys. Chem. 100(15), 6342–6347 (1996)

    Article  Google Scholar 

  21. Jackson, J.: Classical electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  22. Johnson, M., Farid, H.: Exposing digital forgeries in complex lighting environments. IEEE Trans. Inf. Forensics Security 2(3), 450–461 (2007)

    Article  Google Scholar 

  23. Kovacevic, J., Chebira, A.: Life beyond bases: The advent of frames (part II). IEEE Signal Proces. Mag. 24(5), 115–125 (2007)

    Article  Google Scholar 

  24. Kovacevic, J., Chebira, A.: Life beyond bases: The advent of frames (part I). IEEE Signal Proces. Mag. 24(4), 86–104 (2007)

    Article  Google Scholar 

  25. Mahajan, D., Ramamoorthi, R., Curless, B.: A theory of spherical harmonic identities for brdf/lighting transfer and image consistency. In: European Conference on Computer Vision, pp. 41–55 (2006)

  26. Meyer, B.: On the symmetries of spherical harmonics. Canad. J. Math 135(6), 135–157 (1954)

    Google Scholar 

  27. Mhaskar, H., Narcowich, F., Ward, J.: Zonal function network frames on the sphere. Neural Netw. 16(2), 183–203 (2003)

    Article  Google Scholar 

  28. Mhaskar, H., Narcowich, F., Ward, J., Prestin, J.: Polynomial frames on the sphere. Adv. Comput. Math. 13(4), 387–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qing, L., Shan, S., Gao, W.: Face recognition with harmonic de-lighting. In: Proceedings of ACCV2004, pp. 824–829. Jeju, Korea (2004)

  30. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive, Techniques, pp. 497–500 (2001)

  31. Ramamoorthi, R., Hanrahan, P.: On the relationship between radiance and irradiance: Determining the illumination from images of a convex lambertian object. JOSA A 18(10), 2448–2459 (2001)

    Google Scholar 

  32. Schwarzbach, Y.: Groups and Symmetries. Springer, Berlin (2010)

  33. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002. Proceedings., pp. 46–51 (2002)

  34. Sternberg, S.: Group Theory and Physics. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  35. Vale, R., Waldron, S.: Tight frames and their symmetries. Constr. Approx. 21(1), 83–112 (2004)

    MathSciNet  Google Scholar 

  36. Wen, Z., Liu, Z., Huang, T.: Face relighting with radiance environment maps. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition vol. 2, pp. 158–165 (2003)

  37. Zhang, L., Samaras, D.: Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 351–363 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful comments. The work was supported by the National Natural Science Foundation of China (60972126), the Joint Funds of the National Natural Science Foundation of China (U0935002/L05), the Beijing Municipal Natural Science Foundation (4102060), and the State Key Program of National Natural Science of China (61032007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyong Zhao.

Appendices

Appendix A

Euler angles for the operations of the generating matrices are listed in the following. They are corresponding to the rotation matrices between the original z-axis and the symmetry axes of the rotational symmetry groups of the Platonic solids . In Table 2, \({\theta _T} = \mathrm{{1}}\mathrm{{.9106}}\); in Table 3, \({\theta _I} = \mathrm{{1}}\mathrm{{.1071}}\).

Table 2 Euler angles of Tetrahedron
Table 3 Euler angles of Icosahedron

Appendix B

As the noise-resistant property is determined by spherical harmonic frame bounds for the subspaces, the relevant derivation is in terms of spherical harmonic frame. Utilizing the properties of eigenvalue, the explicit expression about eigenvalue can be written as

$$\begin{aligned} {\lambda _{l,i}}&= \left\langle {{{\lambda _{l,i}}{Y_{l,i}}}} \mathrel {\left| {} \right. } {{{Y_{l,i}}}} \right\rangle \nonumber \\&= \left\langle {{S{Y_{l,i}}}} \mathrel {\left| {} \right. } {{{Y_{l,i}}}} \right\rangle \nonumber \\&= \left\langle {{\sum \limits _{l = 0}^L {\sum \limits _{s = 1}^{\left| s \right|} {\sum \limits _{m = d(s)}^{} {\left\langle {{{Y_{l,i}}}} \mathrel {\left| {} \right. } {{Y_{l,m}^s}} \right\rangle } } } Y_{l,m}^s}} \mathrel {\left| {} \right. } {{{Y_{l,i}}}} \right\rangle \nonumber \\&= \sum \limits _{s = 1}^{\left| s \right|} {\sum \limits _{m = d(s)}^{} {{{\left\langle {{{Y_{l,i}}}} \mathrel {\left| {} \right. } {{Y_{l,m}^{{s}}}} \right\rangle }^2}} } \end{aligned}$$
(40)

So \({\lambda _{l,i}} = \sum _{s = 1}^{\left| s \right|} {\sum _{m = d(s)}^{} {{{\left\langle {{{Y_{l,i}}}} \mathrel {\left| {} \right. } {{Y_{l,m}^s}} \right\rangle }^2}} } \), \(d(s) \in [ - l,l]\) for the total frame, \(d(s)\) is a fixed index in \([ - l,l]\) for the partial frame. Considering the structure of our spherical harmonic frames, at least, there exists one group of original spherical harmonic basis function. Then, \({\lambda _{l,i}} \ge 1\).

For a total spherical harmonic frame, as all the rotated copies which are generated by the \(s\)-th generating rotation matrix constitute a frame, the eigenvalue satisfies,

$$\begin{aligned} {\lambda _{l,i}}&= \sum \limits _{s = 1}^{\left| s \right|} {\sum \limits _{m = d(s)}^{} {{{\left\langle {{{Y_{l,i}}}} \mathrel {\left| {} \right. } {{Y_{l,m}^s}} \right\rangle }^2}} } \nonumber \\&= \sum \limits _{s = 1}^{\left| s \right|} {\sum \limits _{k = - l}^l {{{\left\langle {{{Y_{l,i}}}} \mathrel {\left| {} \right. } {{{M^s}Y_{l,k}^{}}} \right\rangle }^2}} } = \left| s \right| \end{aligned}$$
(41)

Thus, the spherical harmonic frame Class I is a tight frame. Frame bound equals the number of generating rotation matrices.

Appendix C

The mean squared error (MSE) of an original coefficients with respect to the estimated coefficients are listed below. Each value reveals the variation of one lighting field represented by the listed method. The lighting coefficients are computed by seven methods, \(C3, C5\), T, Tii, ICO, ICOii, and basis. For each lighting condition, the estimated coefficients are computed from 1,000 noise samples ( To clarify the reasoning, we only consider one class of noise). The class of Gaussian noise is \(15\,\%\) normal plus \(30\,\%\) intensity added on the sphere data. To convey concisely, five environment maps are considered, which are shown in the second row of Fig. 5. The MSE values of one row are arranged in sequence according to five environment maps, from left to right. As the noise-resistant property, the MSE values of frame coefficients are less than the ones of basis coefficients, which obey the inequality (28). For tight frames, the frame bounds of \(C3, C5\), T, and ICO are 3, 5, 4, and 6, respectively. For Tii, the low frame bound \(A\) is 2.5529. For ICOii, the low frame bound \(A\) is 4.1810. Compared with T, the suppressing ability of Tii is weaker. The same conclusion applies for ICO and ICOii (Table 4).

Table 4 The MSE of an original coefficients with respect to the estimated coefficients

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Zheng, Y., Wang, L. et al. Lighting estimation of a convex Lambertian object using weighted spherical harmonic frames. SIViP 9, 57–75 (2015). https://doi.org/10.1007/s11760-012-0410-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0410-5

Keywords

Navigation