Abstract
Symbolic dynamic filtering (SDF) has been recently reported in literature as a pattern recognition tool for early detection of anomalies (i.e., deviations from the nominal behavior) in complex dynamical systems. This paper presents a review of SDF and its performance evaluation relative to other classes of pattern recognition tools, such as Bayesian Filters and Artificial Neural Networks, from the perspectives of: (i) anomaly detection capability, (ii) decision making for failure mitigation and (iii) computational efficiency. The evaluation is based on analysis of time series data generated from a nonlinear active electronic system.
Similar content being viewed by others
References
Ray A.: Symbolic dynamic analysis of complex systems for anomaly detection. Signal Process.G 84(7), 1115–1130 (2004)
Gupta S., Ray A., Mukhopadhyay A.: Anomaly detection in thermal pulse combustors using symbolic time series analysis. Proc. I Mech. I: J. Syst. Control Eng. 220(5), 339–351 (2006)
Gupta S., Ray A., Keller E.: Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process. 21(2), 866–884 (2007)
Rajagopalan V., Ray A., Samsi R., Mayer J.: Pattern identification in dynamical systems via symbolic time series analysis. Pattern Recognit. 40(11), 2897–2907 (2007)
Rajagopalan V., Ray A.: Symbolic time series analysis via wavelet-based partitioning. Signal Process. 86(11), 3309–3320 (2006)
Gupta S., Ray A.: Pattern identification using lattice spin systems: A thermodynamic formalism. Appl. Phys. Lett. 91(19), 194105 (2007)
Jazwinski A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)
Arulampalam M.S., Maskell S., Gordon N., Clapp T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)
Andrieu C., Doucet A., Singh S., Tadic V.B.: Particle methods for change detection, system identification, and control. Proc. IEEE 92(3), 423–438 (2004)
Julier S., Uhlmann J., Durrant-Whyte H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Automat. Control 45(3), 477–482 (2000)
Li P., Kadirkamanathan V.: Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems. IEEE Trans. Syst. Cybern. 31(3), 337–343 (2001)
Duda R.O., Hart P.E., Stork D.G.: Pattern Classification, 2nd edn. Wiley Interscience, New York (2001)
Liu J., Scherpen J.M.A.: Fault detection method for nonlinear systems based on probabilistic neural network filtering. Int. J. Syst. Sci. 33(13), 1039–1050 (2002)
Haykin S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River (1999)
Fukunaga K.: Statistical Pattern Recognition, 2nd en. Academic Press, Boston (1990)
Shawe-Taylor J.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Eckmann J.P., Ruelle D.: Ergodic theory of chaos and strange attractors. Rev. Modern Phys. 57(3), 617–656 (1985)
Lind D., Marcus M.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)
Cover T.M., Thomas J.A.: Elements of Information Theory, 1st edn. Wiley Interscience, New York (1991)
Gupta S., Ray A.: Real-time fatigue life estimation in mechanical structures. Meas. Sci. Technol. 18, 1947–1957 (2007)
Beck C., Schlögel F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge (1993)
Kantz H., Schreiber T.: Nonlinear Time Series Analysis, 2nd edn. Cambridge University Press, Cambridge (2004)
Badii R., Politi A.: Complexity, Hierarchical Structures and Scaling in Physics. Cambridge University Press, Cambridge (1997)
Buhl M., Kennel M.: Statistically relaxing to generating partitions for observed time-series data. Phys. Rev. E 71(4), 046213 (2005)
Mallat S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, Boston (1998)
Ray A.: Signed real measure of regular languages for discrete-event supervisory control. Int. J. Control 78(12), 949–967 (2005)
Bapat R., Raghavan T.: Nonnegative Matrices and Applications. Cambridge University Press, Cambridge (1997)
Nørgaard M., Ravn O., Poulsen N.K., Hansen L.K.: Neural Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)
Gupta S., Ray A., Keller E.: Fatigue damage monitoring by ultrasonic measurements: A symbolic time series analysis approach. Int. J. Fatigue 29(6), 1100–1114 (2007)
Khatkhate A., Ray A., Keller E., Gupta S., Chin S.: Symbolic time series analysis for anomaly detection in mechanical systems. IEEE/ASME Trans. Mechatron. 11(4), 439–447 (2006)
Thompson J.M.T., Stewart H.B.: Nonlinear Dynamics and Chaos. Wiley, Chichester (1986)
Subbu A., Ray A.: Space partitioning via hilbert transform for symbolic time series analysis. Appl. Phys. Lett. 92(8), 084107 (2008)
Chakraborty, S., Sarkar, S., Ray, A.: Symbolic identification and anomaly detection in complex dynamical systems. In: Proceedings of American Control Conference, Seattle (2008)
Tan K., Huang S., Lee T.: Fault detection and diagnosis using neural network design. In: Third International Symposium on Neural Networks, ISNN 2006, Proceedings—Part III, pp. 364–369 (2006)
Patton R.J., Chen J.: Neural networks in fault diagnosis of nonlinear dynamic systems. Eng. Simulation 13, 905–924 (1996)
Sreedhar, R., Fernandez, B., Masada, G.: Neural network based adaptive fault detection scheme. In: Proceedings of the American Control Conference, vol. 5, pp. 3259–3263 (1995)
Hagan M., Demuth H., Beale M.: Neural Network Design, 1st edn. PWS Publishing, Boston (1996)
Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The rprop algorithm. In: Proceedings of the IEEE International Conference on Neural Networks (1993)
Kerschen G., Golinval J.-C.: Non-linear generalization of principal component analysis: From a global to a local approach. J Sound Vibrat. 254(5), 867–876 (2002)
Jakubek S.M., Strasser T.: Artificial neural networks for fault detection in large-scale data acquisition systems. Eng. Appl. Artif. Intell. 17, 233–248 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under Grant No. W911NF-07-1-0376, by the U.S. Office of Naval Research under Grant No. N00014-08-1-380, and by NASA under Cooperative Agreement No. NNX07AK49A.
Rights and permissions
About this article
Cite this article
Rao, C., Ray, A., Sarkar, S. et al. Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns. SIViP 3, 101–114 (2009). https://doi.org/10.1007/s11760-008-0061-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-008-0061-8