Visual object tracking—classical and contemporary approaches | Frontiers of Computer Science Skip to main content
Log in

Visual object tracking—classical and contemporary approaches

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

Visual object tracking (VOT) is an important subfield of computer vision. It has widespread application domains, and has been considered as an important part of surveillance and security system. VOA facilitates finding the position of target in image coordinates of video frames.While doing this, VOA also faces many challenges such as noise, clutter, occlusion, rapid change in object appearances, highly maneuvered (complex) object motion, illumination changes. In recent years, VOT has made significant progress due to availability of low-cost high-quality video cameras as well as fast computational resources, and many modern techniques have been proposed to handle the challenges faced by VOT. This article introduces the readers to 1) VOT and its applications in other domains, 2) different issues which arise in it, 3) various classical as well as contemporary approaches for object tracking, 4) evaluation methodologies for VOT, and 5) online resources, i.e., annotated datasets and source code available for various tracking techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ta D N, ChenWC, Gelfand N, Pulli K. Surftrac: efficient tracking and continuous object recognition using local feature descriptors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 2937–2944

    Google Scholar 

  2. Skrypnyk I, Lowe D G. Scene modelling, recognition and tracking with invariant image features. In: Proceedings of IEEE and ACM International Symposium on Mixed and Augmented Reality. 2004, 110–119

    Chapter  Google Scholar 

  3. Chau D P, Bremond F, Thonnat M. Object tracking in videos: approaches and issues. 2013, arXiv preprint arXiv: 1304.5212

    Google Scholar 

  4. Ko T. A survey on behavior analysis in video surveillance for homeland security applications. In: Proceedings of the 37th IEEE Applied Imagery Pattern Recognition Workshop. 2008, 1–8

    Google Scholar 

  5. Ess A, Schindler K, Leibe B, Van Gool L. Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research, 2010, 29: 1707–1725

    Article  Google Scholar 

  6. Mistry P, Maes P. SixthSense: a wearable gestural interface. In: Proceedings of ACM SIGGRAPH ASIA 2009 Sketches. 2009, 11

    Google Scholar 

  7. Bradski G R. Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. 1998, 214–219

    Google Scholar 

  8. Zhu Z, Ji Q. Eye gaze tracking under natural head movements. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 918–923

    Google Scholar 

  9. Kim I, Choi H S, Yi K M, Choi J Y, Kong S G. Intelligent visual surveillance — a survey. International Journal of Control, Automation and Systems, 2010, 8(5): 926–939

    Article  Google Scholar 

  10. Siemens S. Sistore CX EDS-intelligent video detection system. Technical Report. 2008

    Google Scholar 

  11. Collins R, Lipton A, Kanade T, Tolliver E. A system for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12. 2000

    Google Scholar 

  12. Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809–830

    Article  Google Scholar 

  13. Kettnaker V, Zabih R. Bayesian multi-camera surveillance. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999, 242–259

    Google Scholar 

  14. Hu W, Tan T, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334–352

    Article  Google Scholar 

  15. Collins R T, Lipton A J, Fujiyoshi H, Kanade T. Algorithms for cooperative multisensor surveillance. Proceedings of the IEEE, 2001, 89(10): 1456–1477

    Article  Google Scholar 

  16. Greiffenhagen M, Comaniciu D, Niemann H, Ramesh V. Design, analysis, and engineering of video monitoring systems: an approach and a case study. Proceedings of the IEEE, 2001, 89(10): 1498–1517

    Article  Google Scholar 

  17. Kumar R, Sawhney H, Samarasekera S, Hsu S, Tao H, Guo Y, Hanna K, Pope A, Wildes R, Hirvonen D, Hansen M, Burt P. Aerial video surveillance and exploitation. Proceedings of the IEEE, 2001, 89(10): 1518–1539

    Article  Google Scholar 

  18. Coifman B, Beymer D, McLauchlan P, Malik J. A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C: Emerging Technologies, 1998, 6(4): 271–288

    Article  Google Scholar 

  19. Tai J C, Tseng S T, Lin C P, Song K T. Real-time image tracking for automatic traffic monitoring and enforcement applications. Image and Vision Computing, 2004, 22(6): 485–501

    Article  Google Scholar 

  20. Masoud O, Papanikolopoulos N P. A novel method for tracking and counting pedestrians in real-time using a single camera. IEEE Transactions on Vehicular Technology, 2001, 50(5): 1267–1278

    Article  Google Scholar 

  21. Papanikolopoulos N P, Khosla P K. Adaptive robotic visual tracking: theory and experiments. IEEE Transactions on Automatic Control, 1993, 38(3): 429–445

    Article  MATH  MathSciNet  Google Scholar 

  22. Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K. The intelligent asimo: system overview and integration. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002, 2478–2483

    Chapter  Google Scholar 

  23. Mondragon I F, Campoy P, Correa J F, Mejias L. Visual model feature tracking for UAV control. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing. 2007, 1–6

    Google Scholar 

  24. Lee J, Huang R, Vaughn A, Xiao X, Hedrick J K, Zennaro M, Sengupta R. Strategies of path-planning for a UAV to track a ground vehicle. In: Proceedings of Annual Autonomous Intelligent Networks and Systems Conference. 2003

    Google Scholar 

  25. Handmann U, Kalinkea T, Tzomakas C, Werner M, von Seelen W. Computer vision for driver assistance systems. In: Proceedings of Aerospace/Defense Sensing and Controls. 1998, 136–147

    Google Scholar 

  26. Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064–1072

    Article  Google Scholar 

  27. Ahmed J, Shah M, Miller A, Harper D, Jafri M N. A vision-based system for a UGV to handle a road intersection. In: Proceedings of National Conference on Artificial Intelligence. 2007, 1077

    Google Scholar 

  28. Rand D, Kizony R, Weiss P T. The Sony playstation II eyetoy: low-cost virtual reality for use in rehabilitation. Journal of Neurologic Physical Therapy, 2008, 32(4): 153–163

    Article  Google Scholar 

  29. Wang S, Xiong X, Xu Y, Wang C, Zhang W, Dai X, Zhang D. Facetracking as an augmented input in video games: enhancing presence, role-playing and control. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems. 2006, 1097–1106

    Chapter  Google Scholar 

  30. Amini A A, Owen R L, Anandan P, Duncan J. Non-rigid motion models for tracking the left ventricular wall. In: Proceedings of the 12th International Conference on Information Processing in Medical Imaging. 1991, 343–357

    Chapter  Google Scholar 

  31. Vasconcelos M J M, Ventura S M R, Freitas D R S, Tavares J M R S. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images. Institution ofMechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(10): 1153–1163

    Article  Google Scholar 

  32. Vasconcelos M J M, Ventura S M R, Freitas D R S, Tavares J M R S. Towards the automatic study of the vocal tract from magnetic resonance images. Journal of Voice: Official Journal of the Voice Foundation, 2011, 25: 732–742

    Article  Google Scholar 

  33. Stauffer C, Grimson W E L. Learning patterns of activity using realtime tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747–757

    Article  Google Scholar 

  34. Bodor R, Jackson M, Papanikolopoulos N. Vision-based human tracking and activity recognition. In: Proceedings of the 11thMediterranean Conference on Control and Automation. 2003, 18–20

    Google Scholar 

  35. Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of International Joint Conference on Artificial Intelligence. 1981, 674–679

    Google Scholar 

  36. Fitts J M. Precision correlation tracking via optimal weighting functions. In: Proceedings of the 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. 1979, 280–283

    Google Scholar 

  37. Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 13

    Article  Google Scholar 

  38. Joshi K A, Thakore D G. A survey on moving object detection and tracking in video surveillance system. International Journal of Soft Computing and Engineering, 2012: 2231–2307

    Google Scholar 

  39. Yang H, Shao L, Zheng F, Wang L, Song Z. Recent advances and trends in visual tracking: a review. Neurocomputing, 2011, 74(18): 3823–3831

    Article  Google Scholar 

  40. Cannons K. A review of visual tracking. Technical Report CSE-2008-07. 2008

    MATH  Google Scholar 

  41. Geronimo D, Lopez A M, Sappa A D, Graf T. Survey of pedestrian detection for advanced driver assistance systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239–1258

    Article  Google Scholar 

  42. Ogale N A. A survey of techniques for human detection. Master’s Thesis. University of Maryland, 2006

    Google Scholar 

  43. Trucco E, Plakas K. Video tracking: a concise survey. IEEE Journal of Oceanic Engineering, 2006, 31(2): 520–529

    Article  Google Scholar 

  44. Moeslund T B, Hilton A, Krüger V. A survey of advances in visionbased human motion capture and analysis. Computer Vision and Image Understanding, 2006, 104(2): 90–126

    Article  Google Scholar 

  45. Aggarwal J K, Cai Q. Human motion analysis: a review. In: Proceedings of IEEE Nonrigid and Articulated Motion Workshop. 1997, 90–102

    Chapter  Google Scholar 

  46. Kang W, Deng F. Research on intelligent visual surveillance for public security. In: Proceedings of IEEE/ACIS International Conference on Computer and Information Science. 2007, 824–829

    Google Scholar 

  47. Forsyth D A, Arikan O, Ikemoto L. Computational Studies of Human Motion: Tracking and Motion Synthesis. Boston: Now Publishers Inc., 2006

    Google Scholar 

  48. Zhan B, Monekosso D N, Remagnino P, Velastin S A, Xu L Q. Crowd analysis: a survey. Machine Vision and Applications, 2008, 19(5–6): 345–357

    Article  MATH  Google Scholar 

  49. Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188

    Article  Google Scholar 

  50. Jalal A S, Singh J. The state-of-the-art in visual object tracking. Informatica Slovenia, 2012, 36(3): 227–248

    Google Scholar 

  51. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel A V D. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58

    Article  Google Scholar 

  52. Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 1975, 21(1): 32–40

    Article  MATH  MathSciNet  Google Scholar 

  53. Cheng Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790–799

    Article  Google Scholar 

  54. Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619

    Article  Google Scholar 

  55. Comaniciu D, Meer P. Robust analysis of feature spaces: color image segmentation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997, 750–755

    Chapter  Google Scholar 

  56. Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2000, 142–149

    Google Scholar 

  57. Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564–575

    Article  Google Scholar 

  58. Hero A O, Ma B, Michel O J J, Gorman J. Applications of entropic spanning graphs. IEEE Signal Processing Magazine, 2002, 19(5): 85–95

    Article  Google Scholar 

  59. Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 176–183

    Google Scholar 

  60. Beleznai C, Fruhstuck B, Bischof H. Human tracking by fast mean shift mode seeking. Journal of Multimedia, 2006, 1(1): 1–8

    Article  Google Scholar 

  61. Beleznai C, Fruhstuck B, Bischof H. Human tracking by mode seeking. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis. 2005, 1–6

    Google Scholar 

  62. Beleznai C, Fruhstuck B, Bischof H. Tracking multiple humans by fast mean shift mode seeking. In: Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. 2005, 25–32

    Google Scholar 

  63. Beleznai C, Fruhstuck B, Bischof H. Detecting humans in groups using a fast mean shift procedure. In: Proceedings of Workshop of the Austrian Association for Pattern Recogniton. 2004, 71–78

    Google Scholar 

  64. Beleznai C, Fruhstuck B, Bischof H. Human detection in groups using a fast mean shift procedure. In: Proceedings of International Conference on Image Processing. 2004, 349–352

    Google Scholar 

  65. Zivkovic Z, Krose B. An EM-like algorithm for color-histogram-based object tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 798–803

    Google Scholar 

  66. Zhou H, Yuan Y, Zhang Y, Shi C. Non-rigid object tracking in complex scenes. Pattern Recognition Letters, 2009, 30(2): 98–102

    Article  Google Scholar 

  67. Ning J, Zhang L, Zhang D, Wu C. Robust object tracking using joint color-texture histogram. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23: 1245–1263

    Article  Google Scholar 

  68. Shan C, Tan T, Wei Y. Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 2007, 40(7): 1958–1970

    Article  MATH  Google Scholar 

  69. Wang X, Liu L, Tang Z. Infrared human tracking with improved mean shift algorithm based on multicue fusion. Journal of Applied Otics, 2009, 48(21): 4201–4212

    Article  Google Scholar 

  70. Shen C, Brooks M J, Van Den Hengel A. Fast global kernel density mode seeking: applications to localization and tracking. IEEE Transactions on Image Processing, 2007, 16(5): 1457–1469

    Article  MathSciNet  Google Scholar 

  71. Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 798–805

    Google Scholar 

  72. Jeyakar J, Babu R V, Ramakrishnan K R. Robust object tracking with background-weighted local kernels. Computer Vision and Image Understanding, 2008, 112(3): 296–309

    Article  Google Scholar 

  73. Khan M I, Ahmed J, Ali A, Masood A. Robust edge-enhanced fragment based normalized correlation tracking in cluttered and occluded imagery. In: Proceedings of Signal Processing, Image Processing and Pattern Recognition. 2009, 169–176

    Chapter  Google Scholar 

  74. Kalman R E, Bucy R S. New results in linear filtering and prediction theory. Journal of Basic Engineering, 1961, 83: 95–108

    Article  MathSciNet  Google Scholar 

  75. Brookner E. Tracking and Kalman Filtering Made Easy. New York: Wiley, 1998

    Book  Google Scholar 

  76. Grewal M S, Andrews A P. Kalman filtering: theory and practice using MATLAB. New York, Chichester, Brisbane: JohnWiley & Sons, 2008

    Google Scholar 

  77. Welch G, Bishop G. An introduction of the kalman filter. Technical Report. 2005

    Google Scholar 

  78. Asgarizadeh M, Pourghassem H. A robust object tracking synthetic structure using regional mutual information and edge correlation-based tracking algorithm in aerial surveillance application. Signal, Image and Video Processing, 2015, 9(1): 175–189

    Article  Google Scholar 

  79. Comaniciu D, Ramesh V. Mean shift and optimal prediction for efficient object tracking. In: Proceedings of International Conference on Image Processing. 2000, 70–73

    Google Scholar 

  80. Li Z, Xu C, Li Y. Robust object tracking using mean shift and fast motion estimation. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing and Communication Systems. 2007, 734–737

    Google Scholar 

  81. Li X, Zhang T, Shen X, Sun J. Object tracking using an adaptive kalman filter combined with mean shift. Optical Engineering, 2010, 49(2): 020503

    Article  Google Scholar 

  82. Ali A, Mirza S M. Object tracking using correlation, kalman filter and fast means shift algorithms. In: Proceedings of International Conference on Emerging Technologies. 2006, 174–178

    Google Scholar 

  83. Ahmed J, Jafri M N, Shah M, Akbar M. Real-time edge-enhanced dynamic correlation and predictive open-loop car-following control for robust tracking. Machine Vision and Applications, 2008, 19(1): 1–25

    Article  MATH  Google Scholar 

  84. Boykov Y, Huttenlocher D P. Adaptive bayesian recognition in tracking rigid objects. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2000, 697–704

    Google Scholar 

  85. Beymer D, McLauchlan P, Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1997, 495–501

    Chapter  Google Scholar 

  86. Broida T J, Chellappa R. Estimation of object motion parameters from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1): 90–99

    Article  Google Scholar 

  87. Gennery D B. Visual tracking of known three-dimensional objects. International Journal of Computer Vision, 1992, 7(3): 243–270

    Article  Google Scholar 

  88. Terzopoulos D, Szeliski R. Tracking with kalman snakes. In: Active Vision. Cambridge, MA, USA: MIT Press, 1993, 3–20

    Google Scholar 

  89. Blake A, Isard M. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1998

    Book  Google Scholar 

  90. Cuevas E V, Zaldivar D, Rojas R. Kalman filter for vision tracking. Technical Report. 2005

    Google Scholar 

  91. Jang D S, Choi H I. Active models for tracking moving objects. Pattern Recognition, 2000, 33(7): 1135–1146

    Article  Google Scholar 

  92. Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using kalman-filtering. In: Proceedings of International Conference on recent Advances in Mechatronics. 1995, 193–199

    Google Scholar 

  93. Peterfreund N. Robust tracking of position and velocity with kalman snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(6): 564–569

    Article  Google Scholar 

  94. Anderson B D O, Moore J B. Optimal Filtering. Mincola: Courier Dover Publications, 2012

    MATH  Google Scholar 

  95. Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing, 2000, 10(3): 197–208

    Article  Google Scholar 

  96. Isard M, Blake A. Condensation–conditional density propagation for visual tracking. International Journal of Computer Vision, 1998, 29(1): 5–28

    Article  Google Scholar 

  97. Rao G M, Satyanarayana C. Visual object target tracking using particle filter: a survey. International Journal of Image, Graphics and Signal Processing, 2013, 5(6): 57–71

    Article  Google Scholar 

  98. Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: Wiley, 1973

    MATH  Google Scholar 

  99. Gonzalez R C, Woods R E. Digital Image Processing. Upper Saddle River, N.J.: Pearson/Prentice Hall, 2008

    Google Scholar 

  100. Kuglin C D, Hines D C. The phase correlation image alignment method. IEEE Conference on Cybernetics and Society, 1975, 163–165

    Google Scholar 

  101. Lewis J P. Fast normalized cross-correlation. Vision Interface, 1995, 10(1): 120–123

    Google Scholar 

  102. Chien S I, Sung S H. Adaptive window method with sizing vectors for reliable correlation-based target tracking. Pattern Recognition, 2000, 33(2): 237–249

    Article  Google Scholar 

  103. Manduchi R, Mian G A. Accuracy analysis for correlation-based image registration algorithms. In: Proceedings of IEEE International Symposium on Circuits and Systems. 1993, 834–837

    Google Scholar 

  104. Stone H S, Tao B, McGuire M. Analysis of image registration noise due to rotationally dependent aliasing. Journal of Visual Communication and Image Representation, 2003, 14(2): 114–135

    Article  Google Scholar 

  105. Stone H S. Fourier-based image registration techniques. Technical Report. 2002

    Google Scholar 

  106. Foroosh H, Zerubia J B, Berthod M. Extension of phase correlation to subpixel registration. IEEE Transactions on Image Processing, 2002, 11(3): 188–200

    Article  Google Scholar 

  107. Keller Y, Averbuch A, Miller O. Robust phase correlation. In: Proceedings of the 17th International Conference on Pattern Recognition. 2004, 740–743

    Google Scholar 

  108. Ahmed J, Jafri M N. Improved phase correlation matching. In: Proceedings of International Conference on Image and Signal Processing. 2008, 128–135

    Google Scholar 

  109. Blackman S S, Popoli R F. Design and Analysis of Modern Tracking Systems. Boston, M A: Artech House, 1999

    MATH  Google Scholar 

  110. Nixon M S, Aguado A S. Feature Extraction & Image Processing. London: Academic Press, 2008

    Google Scholar 

  111. Ali A, Jalil A, Ahmed J, Iftikhar M A, Hussain M. Correlation, kalman filter and adaptive fast mean shift based heuristic approach for robust visual tracking. Signal, Image and Video Processing, 2014: 1–19

    Google Scholar 

  112. Wren C R, Azarbayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780–785

    Article  Google Scholar 

  113. Grimson W E L, Stauffer C, Romano R, Lee L. Using adaptive tracking to classify and monitor activities in a site. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1998, 22–29

    Google Scholar 

  114. Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999

    Google Scholar 

  115. KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. Video-Based Surveillance Systems. 2002, 135–144

    Chapter  Google Scholar 

  116. Horprasert T, Harwood D, Davis L S. A robust background subtraction and shadow detection. In: Proceedings of Asian Conference on Computer Vision. 1999, 983–988

    Google Scholar 

  117. Horprasert T, Harwood D, Davis L S. A statistical approach for realtime robust background subtraction and shadow detection. In: Proceedings of International Conference on Computer Vision. 1999, 1–19

    Google Scholar 

  118. Oliver N M, Rosario B, Pentland A P. A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831–843

    Article  Google Scholar 

  119. Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. 1998, 8–14

    Google Scholar 

  120. Dailey D J, Cathey F W, Pumrin S. An algorithm to estimate mean traffic speed using uncalibrated cameras. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(2): 98–107

    Article  Google Scholar 

  121. Dailey D J, Li L. An algorithm to estimate vehicle speed using uncalibrated cameras. In: Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems. 1999, 441–446

    Google Scholar 

  122. Horn B K P, Schunck B G. Determining optical flow. Technical Report. 1980

    Google Scholar 

  123. Black M J, Anandan P. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 1996, 63(1): 75–104

    Article  Google Scholar 

  124. Szeliski R, Coughlan J. Spline-based image registration. International Journal of Computer Vision, 1997, 22(3): 199–218

    Article  Google Scholar 

  125. Shi J, Tomasi C. Good features to track. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1994, 593–600

    Google Scholar 

  126. Rangarajan K, Shah M. Establishing motion correspondence. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1991, 103–108

    Google Scholar 

  127. Papageorgiou C P, Oren M, Poggio T. A general framework for object detection. In: Proceedings of the 6th IEEE International Conference on Computer Vision. 1998, 555–562

    Google Scholar 

  128. Cremers D, Schnorr C. Statistical shape knowledge in variational motion segmentation. Image and Vision Computing, 2003, 21(1): 77–86

    Article  Google Scholar 

  129. Li B, Chellappa R, Zheng Q, Der S Z. Model-based temporal object verification using video. IEEE Transactions on Image Processing, 2001, 10(6): 897–908

    Article  Google Scholar 

  130. Bertalmio M, Sapiro G, Randall G. Morphing active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(7): 733–737

    Article  Google Scholar 

  131. Mansouri A R. Region tracking via level set PDEs without motion computation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 947–961

    Article  Google Scholar 

  132. Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619–1632

    Article  Google Scholar 

  133. Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: Proceedings of British Machine Vision Conference. 2006, 1(5): 6

    Google Scholar 

  134. Collins R T, Liu Y, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631–1643

    Article  Google Scholar 

  135. Santner J, Leistner C, Saffari A, Pock T, Bischof H. Prost: parallel robust online simple tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 723–730

    Google Scholar 

  136. Liu X, Yu T. Gradient feature selection for online boosting. In: Proceedings of the 11th IEEE International Conference on Computer Vision. 2007, 1–8

    Google Scholar 

  137. Avidan S. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261–271

    Article  Google Scholar 

  138. Wang J, Chen X, Gao W. Online selecting discriminative tracking features using particle filter. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1037–1042

    Google Scholar 

  139. Kuncheva L I. Combining pattern classifiers: methods and algorithms. IEEE Transactions on Neural Networks, 2007, 18(3): 964–964

    Article  Google Scholar 

  140. Bishop C M. Pattern Recognition and Machine Learning. Springer, 2006

    MATH  Google Scholar 

  141. Hare S, Saffari A, Torr P H S. Struck: structured output tracking with kernels. In: Proceedings of IEEE International Conference on Computer Vision. Nov 2011, 263–270

    Google Scholar 

  142. Stalder S, Grabner H. On-line Boosting Trackers. ETH-Zurich, 2009

    Google Scholar 

  143. Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: Proceedings of European Conference on Computer Vision. 2008, 234–247

    Google Scholar 

  144. Zeisl B, Leistner C, Saffari A, Bischof H. On-line semi-supervised multiple-instance boosting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1879–1879

    Google Scholar 

  145. Saffari A, Leistner C, Godec M, Bischof H. Robust multi-view boosting with priors. In: Proceedings of European Conference on Computer Vision, 2010, 776–789

    Google Scholar 

  146. Leistner C, Saffari A, Roth P M, Bischof H. On robustness of on-line boosting—a competitive study. In: Proceedings of IEEE International Conference on Computer Vision Workshops. 2009, 1362–1369

    Google Scholar 

  147. Masnadi-Shirazi H, Mahadevan V, Vasconcelos N. On the design of robust classifiers for computer vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 779–786

    Google Scholar 

  148. Zhang K, Song H. Real-time visual tracking via online weighted multiple instance learning. Pattern Recognition, 2013, 46(1): 397–411

    Article  MATH  Google Scholar 

  149. Williams O, Blake A, Cipolla R. A sparse probabilistic learning algorithm for real-time tracking. In: Proceedings of IEEE International Conference on Computer Vision. 2003, 353–360

    Chapter  Google Scholar 

  150. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. 1995, 1942–1948

    Chapter  Google Scholar 

  151. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium onMicroMachine and Human Science. 1995, 39–43

    Chapter  Google Scholar 

  152. Poli R. Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, 2008, 2008: 3

    Google Scholar 

  153. Clerc M, Kennedy J. The particle swarm — explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58–73

    Article  Google Scholar 

  154. Wachowiak M P, Smolikova R, Zheng Y, Zurada J M, Elmaghraby A S. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 289–301

    Article  Google Scholar 

  155. Engelbrecht A P. Computational Intelligence: an Introduction. 2nd ed. New York: John Wiley & Sons, 2007

    Book  Google Scholar 

  156. Sedighizadeh D, Masehian E. Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 2009, 1(5): 486–502

    Article  Google Scholar 

  157. Zhang X, Hu W, Maybank S, Zhu M. Sequential particle swarm optimization for visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8

    Google Scholar 

  158. Zhang X, Hu W, Qu W, Maybank S. Multiple object tracking via species-based particle swarm optimization. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1590–1602

    Article  Google Scholar 

  159. Akbari R, Jazi M D, Palhang M. A hybrid method for robust multiple objects tracking in cluttered background. In: Proceedings of the 2nd International Conference on Information & Communication Technologies. 2006, 1562–1567

    Google Scholar 

  160. Kwolek B. Multi-object tracking using particle swarm optimization on target interactions. In: Proceedings of Advances in Heuristic Signal Processing and Applications. 2013, 63–78

    Chapter  Google Scholar 

  161. Anton-Canalis L, Hernandez-Tejera M, Sanchez-Nielsen E. Particle swarms as video sequence inhabitants for object tracking in computer vision. In: Proceedings of the 6th International Conference on Intelligent Systems Design and Applications. 2006, 604–609

    Chapter  Google Scholar 

  162. Zheng Y, Meng Y. Adaptive object tracking using particle swarm optimization. In: Proceedings of International Symposium on Computational Intelligence in Robotics and Automation. 2007, 43–48

    Google Scholar 

  163. Tawab A M A, Abdelhalim M B, Habib S E D. Efficient multi-feature PSO for fast gray level object-tracking. Applied Soft Computing, 2014, 14: 317–337

    Article  Google Scholar 

  164. Borra S K, Chaparala S K. Tracking of an object in video stream using a hybrid PSO-FCM and pattern matching. International Journal of Engineering Research and Technology, 2013, 2

    Google Scholar 

  165. Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  166. Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223

    Article  MATH  MathSciNet  Google Scholar 

  167. Wright J, Ma Y, Mairal J, Sapiro G, Huang T S, Yan S. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6): 1031–1044

    Article  Google Scholar 

  168. Sapiro G, Mairal J, Wright J, Ma Y, Huang T, Yan S. Sparse representation for computer vision and pattern recognition. Technical Report. 2009

    Google Scholar 

  169. Yang J, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873

    Article  MathSciNet  Google Scholar 

  170. Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210–227

    Article  Google Scholar 

  171. Mei X, Ling H. Robust visual tracking using l1 minimization. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1436–1443

    Google Scholar 

  172. Mei X. Visual tracking and illumination recovery via sparse representation. Dissertation for the Doctoral Degree. University of Maryland, 2009

    Google Scholar 

  173. Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259–2272

    Article  Google Scholar 

  174. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C. Robust and fast collaborative tracking with two stage sparse optimization. In: Proceedings of European Conference on Computer Vision. 2010, 624–637

    Google Scholar 

  175. Liu J, Huang J, Yang L, Kulikowski C. Robust tracking using local sparse appearance model and k-selection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2011, 1313–1320

    Google Scholar 

  176. Zhong W, Lu H, Yang H M. Robust object tracking via sparsity-based collaborative model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845

    Google Scholar 

  177. Jia X, Lu X, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829

    Google Scholar 

  178. Zhang K, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision. 2012, 864–877

    Google Scholar 

  179. Zhang S, Yao H, Sun X, Lu X. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7): 1772–1788

    Article  Google Scholar 

  180. Oliva A, Torralba A. The role of context in object recognition. Trends in Cognitive Sciences, 2007, 11(12): 520–527

    Article  Google Scholar 

  181. Divvala S K, Hoiem D, Hays J H, Efros A A, Hebert M. An empirical study of context in object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1271–1278

    Google Scholar 

  182. Yang M, Wu Y, Hua G. Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7): 1195–1209

    Article  Google Scholar 

  183. Li Y, Nevatia R. Key object driven multi-category object recognition, localization and tracking using spatio-temporal context. In: Proceedings of Europian Conference on Computer Vision. 2008, 409–422

    Google Scholar 

  184. Nguyen H T, Ji Q, Smeulders A W M. Spatio-temporal context for robust multitarget tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 52–64

    Article  Google Scholar 

  185. Wen L, Cai Z, Lei Z, Yi D, Li S. Robust online learned spatio-temporal context model for visual tracking. IEEE Transactions on Image Processing, 2014, 23(2): 785–796

    Article  MathSciNet  Google Scholar 

  186. Grabner H, Matas J, Van Gool L, Cattin P. Tracking the invisible: Learning where the object might be. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1285–1292

    Google Scholar 

  187. Wu Z, Hristov N I, Hedrick T L, Kunz T H, Betke M. Tracking a large number of objects from multiple views. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1546–1553

    Google Scholar 

  188. Sugimura D, Kitani KM, Okabe T, Sato Y, Sugimoto A. Using individuality to track individuals: clustering individual trajectories in crowds using local appearance and frequency trait. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1467–1474

    Google Scholar 

  189. Ali S, Shah M. Floor fields for tracking in high density crowd scenes. Lecture Notes in Computer Science. 2008, 5303: 1–14

    Article  MathSciNet  Google Scholar 

  190. Zhao T, Nevatia R. Tracking multiple humans in crowded environment. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 406–413

    Google Scholar 

  191. Betke M, Hirsh D E, Bagchi A, Hristov N I, Makris N C, Kunz T H. Tracking large variable numbers of objects in clutter. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1–8

    Google Scholar 

  192. Li Y, Huang C, Nevatia R. Learning to associate: Hybridboosted multitarget tracker for crowded scene. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 2953–2960

    Google Scholar 

  193. Wu B, Nevatia R. Tracking of multiple, partially occluded humans based on static body part detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2006, 951–958

    Google Scholar 

  194. Brostow G J, Cipolla R. Unsupervised Bayesian detection of independent motion in crowds. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2006, 594–601

    Google Scholar 

  195. Pellegrini S, Ess A, Schindler K, Van Gool L. You’ll never walk alone: Modeling social behavior for multi-target tracking. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 261–268

    Google Scholar 

  196. Rodriguez M, Ali S, Kanade T. Tracking in unstructured crowded scenes. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1389–1396

    Google Scholar 

  197. Kratz L, Nishino K. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 693–700

    Google Scholar 

  198. Rodriguez M, Sivic J, Laptev I, Audibert J Y. Data-driven crowd analysis in videos. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 1235–1242

    Google Scholar 

  199. Idrees H, Warner N, Shah M. Tracking in dense crowds using prominence and neighborhood motion concurrence. Image and Vision Computing, 2014, 32(1): 14–26

    Article  Google Scholar 

  200. Zhang L, Maaten L. Structure preserving object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1838–1845

    Google Scholar 

  201. Zhu F, Wang X, Yu N. Crowd tracking with dynamic evolution of group structures. In: Proceedings of the 13th European Conference on Computer Vision–ECCV. 2014, 139–154

    Google Scholar 

  202. Gao Y, Ji R, Zhang L, Hauptmann A. Symbiotic tracker ensemble towards a unified tracking framework. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(7): 1122–1131

    Article  Google Scholar 

  203. Zhong B, Yao H, Chen S, Ji R, Chin T J, Wang H. Visual tracking via weakly supervised learning from multiple imperfect oracles. Pattern Recognition, 2014, 47(3): 1395–1410

    Article  MATH  Google Scholar 

  204. Yao A, Lin X, Wang G, Yu S. A compact association of particle filtering and kernel based object tracking. Pattern Recognition, 2012, 45(7): 2584–2597

    Article  MATH  Google Scholar 

  205. Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the 12th European Conference on Computer Vision—ECCV 2012. 2012, 702–715

    Chapter  Google Scholar 

  206. Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2411–2418

    Google Scholar 

  207. Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1–3): 125–141

    Article  Google Scholar 

  208. Kwon J, Lee K M. Visual tracking decomposition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1269–1276

    Google Scholar 

  209. Wang Y, Qi Y, Li Y. Memory-based multiagent coevolution modeling for robust moving object tracking. The Scientific World Journal, 2013, 2013

    Google Scholar 

  210. Wang Y, Qi Y. Memory-based cognitive modeling for robust object extraction and tracking. Applied Intelligence, 2013, 39(3): 614–629

    Article  MathSciNet  Google Scholar 

  211. Smith K, Ba S O, Odobez J M, Gatica-Perez D. Tracking the visual focus of attention for a varying number of wandering people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1212–1229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Niu.

Additional information

Ahmad Ali received his BS in computer sciences (Hons.) from University of Engineering & Technology (UET), Lahore, Pakistan. He completed his MS in system engineering from Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan. Currently, he is pursuing his PhD from PIEAS. His areas of interest are image processing, computer vision, object tracking, artificial intelligence, and speech processing.

Abdul Jalil received his MS and M.Phil in electronics from Qauid-i-Azam University, Islamabad, Pakistan in 1986 and 2000, respectively. He completed his PhD in image and signal processing from Mohammad Ali Jinnah University, Pakistan in 2006. Then, he remained affiliated with University of Sussex for Post Doctorate of 9 months during 2008–09 period. His research interests are related to machine vision and signal, and image processing.

Jianwei Niu received his PhD in computer science from Beihang University (BUAA), China in 2002. He is a professor in the School of Computer Science and Engineering, BUAA, and an IEEE senior member. He has published more than 100 referred papers, and filed more than 30 patents in mobile and pervasive computing. His current research interests include mobile and pervasive computing, mobile video analysis.

Xiaoke Zhao received his MS in computer science in 2014 from Beihang University, China. He received his BS in 2011 from Guiyang University. He has worked as a research intern at the Nokia Research Center in Beijing. His current research interests include computer vision and pattern recognition.

Saima Rathore received the BS degree in software engineering from Fatima Jinnah Women University, Rawalpindi, Pakistan, in 2006 and the MS degree in computer engineering from the University of Engineering and Technology, Taxila, Pakistan in 2008. She completed her PhD in computer science from Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan in 2015. Currently, she is working as a post-doctoral researcher in Perelman School of Medicine, University of Pennsylvania, USA. Her research interests include medical image analysis, segmentation, classification and evolutionary algorithms.

Javed Ahmed received his BE in electronics engineering from NED University of Engineering & Technology, Karachi, Pakistan in 1994. Then, he received his MS in systems engineering with the 2nd position under the fellowship program from Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan in 1997. He joined National Engineering and Scientific Commission in 1997 and worked in the areas of electronics and signal processing. He received his PhD in electrical (telecom) engineering from National University of Sciences & Technology (NUST), Islamabad, Pakistan in 2008. He obtained the Certificate of Achievement from Computer Vision Lab at University of Central Florida, USA in February 2007 for conducting 8-month outstanding joint research with them. His current research areas are image processing, computer vision, signal processing, and soft computing.

Muhammad Aksam Iftikhar completed his BS in computer engineering from University of Engineering and Technology, Lahore, Pakistan in 2007. He received his MS in computer science from the same university in 2010. He completed his PhD from Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan. His primary research areas include image processing (especially medical image processing and analysis), computer vision, machine learning, and pattern recognition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Jalil, A., Niu, J. et al. Visual object tracking—classical and contemporary approaches. Front. Comput. Sci. 10, 167–188 (2016). https://doi.org/10.1007/s11704-015-4246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-015-4246-3

Keywords

Navigation