Investigating consumers’ store-choice behavior via hierarchical variable selection | Advances in Data Analysis and Classification Skip to main content

Advertisement

Log in

Investigating consumers’ store-choice behavior via hierarchical variable selection

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper is concerned with a store-choice model for investigating consumers’ store-choice behavior based on scanner panel data. Our store-choice model enables us to evaluate the effects of the consumer/product attributes not only on the consumer’s store choice but also on his/her purchase quantity. Moreover, we adopt a mixed-integer optimization (MIO) approach to selecting the best set of explanatory variables with which to construct the store-choice model. We devise two MIO models for hierarchical variable selection in which the hierarchical structure of product categories is used to enhance the reliability and computational efficiency of the variable selection. We assess the effectiveness of our MIO models through computational experiments on actual scanner panel data. These experiments are focused on the consumer’s choice among three types of stores in Japan: convenience stores, drugstores, and (grocery) supermarkets. The computational results demonstrate that our method has several advantages over the common methods for variable selection, namely, the stepwise method and \(L_1\)-regularized regression. Furthermore, our analysis reveals that convenience stores are most strongly chosen for gift cards and garbage disposal permits, drugstores are most strongly chosen for products that are specific to drugstores, and supermarkets are most strongly chosen for health food products by women with families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthanari TS, Dodge Y (1981) Mathematical programming in statistics. Wiley, New York

    MATH  Google Scholar 

  • Bach F (2008) Exploring large feature spaces with hierarchical multiple kernel learning. In: Proceedings of the 21st international conference on neural information processing systems, pp 105–112

  • Baker J, Parasuraman A, Grewal D, Voss GB (2002) The influence of multiple store environment cues on perceived merchandise value and patronage intentions. J Mark 66:120–141

    Article  Google Scholar 

  • Bertsimas D, King A (2016) An algorithmic approach to linear regression. Oper Res 64:2–16

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, King A (2017) Logistic regression: from art to science. Stat Sci 32:367–384

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, King A, Mazumder R (2016) Best subset selection via a modern optimization lens. Ann Stat 44:813–852

    Article  MathSciNet  MATH  Google Scholar 

  • Bien J, Taylor J, Tibshirani R (2013) A lasso for hierarchical interactions. Ann Stat 41:1111–1141

    Article  MathSciNet  MATH  Google Scholar 

  • Bloemer J, de Ruyter K (1998) On the relationship between store image, store satisfaction and store loyalty. Eur J Mark 32:499–513

    Article  Google Scholar 

  • Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271

    Article  MathSciNet  MATH  Google Scholar 

  • Briesch RA, Chintagunta PK, Fox EJ (2009) How does assortment affect grocery store choice? J Mark Res 46:176–189

    Article  Google Scholar 

  • Chernev A (2006) Decision focus and consumer choice among assortments. J Consum Res 33:50–59

    Article  Google Scholar 

  • Efroymson MA (1960) Multiple regression analysis. Math Methods Digit Comput 1:191–203

    MathSciNet  Google Scholar 

  • Furnival GM, Wilson RW (2000) Regressions by leaps and bounds. Technometrics 42:69–79

    Article  MATH  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Huang J, Zhang T, Metaxas D (2011) Learning with structured sparsity. J Mach Learn Res 12:3371–3412

    MathSciNet  MATH  Google Scholar 

  • Jacob L, Obozinski G, Vert JP (2009) Group lasso with overlap and graph lasso. In: Proceedings of the 26th international conference on machine learning, pp 433–440

  • Jenatton R, Audibert JY, Bach F (2011a) Structured variable selection with sparsity-inducing norms. J Mach Learn Res 12:2777–2824

    MathSciNet  MATH  Google Scholar 

  • Jenatton R, Mairal J, Obozinski G, Bach F (2011b) Proximal methods for hierarchical sparse coding. J Mach Learn Res 12:2297–2334

    MathSciNet  MATH  Google Scholar 

  • Kahn BE, Lehmann DR (1991) Modeling choice among assortments. J Retail 67:274–299

    Google Scholar 

  • Kim S, Xing EP (2010) Tree-guided group lasso for multi-task regression with structured sparsity. In: Proceedings of the 27th international conference on machine learning, pp 543–550

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324

    Article  MATH  Google Scholar 

  • Konno H, Yamamoto R (2009) Choosing the best set of variables in regression analysis using integer programming. J Glob Optim 44:273–282

    Article  MathSciNet  MATH  Google Scholar 

  • Leszczyc PTP, Timmermans H (2002) Experimental choice analysis of shopping strategies. J Retail 77:493–509

    Article  Google Scholar 

  • Liu H, Motoda H (eds) (2007) Computational methods of feature selection. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • McFadden D (1986) The choice theory approach to market research. Mark Sci 5:275–297

    Article  Google Scholar 

  • Maldonado S, Pérez J, Weber R, Labbé M (2014) Feature selection for support vector machines via mixed integer linear programming. Inf Sci 279:163–175

    Article  MathSciNet  MATH  Google Scholar 

  • Miyashiro R, Takano Y (2015a) Subset selection by Mallows’ $C_p$: a mixed integer programming approach. Expert Syst Appl 42:325–331

    Article  Google Scholar 

  • Miyashiro R, Takano Y (2015b) Mixed integer second-order cone programming formulations for variable selection in linear regression. Eur J Oper Res 247:721–731

    Article  MathSciNet  MATH  Google Scholar 

  • Pan Y, Zinkhan GM (2006) Determinants of retail patronage: a meta-analytical perspective. J Retail 82:229–243

    Article  Google Scholar 

  • Reutterer T, Teller C (2009) Store format choice and shopping trip types. Int J Retail Distrib Manag 37:695–710

    Article  Google Scholar 

  • Sato T, Takano Y, Miyashiro R, Yoshise A (2016a) Feature subset selection for logistic regression via mixed integer optimization. Comput Optim Appl 64:865–880

    Article  MathSciNet  MATH  Google Scholar 

  • Sato T, Takano Y, Nakahara T (2016b) Using mixed integer optimisation to select variables for a store choice model. Int J Knowl Eng Soft Data Paradig 5:123–134

    Article  Google Scholar 

  • Sato T, Takano Y, Miyashiro R (2017) Piecewise-linear approximation for feature subset selection in a sequential logit model. J Oper Res Soc Jpn 60:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Tamura R, Kobayashi K, Takano Y, Miyashiro R, Nakata K, Matsui T (2016) Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor. Optimization Online. http://www.optimization-online.org/DB_HTML/2016/09/5655.html

  • Tamura R, Kobayashi K, Takano Y, Miyashiro R, Nakata K, Matsui T (2017) Best subset selection for eliminating multicollinearity. J Oper Res Soc Jpn 60:321–336

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B58:267–288

    MathSciNet  MATH  Google Scholar 

  • Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused lasso. J R Stat Soc B67:91–108

    Article  MathSciNet  MATH  Google Scholar 

  • Tversky A, Sattath S (1979) Preference trees. Psychol Rev 86:542–573

    Article  Google Scholar 

  • Ustun B, Rudin C (2016) Supersparse linear integer models for optimized medical scoring systems. Mach Learn 102:349–391

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson ZT, Sahinidis NV (2017) The ALAMO approach to machine learning. Comput Chem Eng 106:785–795

    Article  Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc B68:49–67

    Article  MathSciNet  MATH  Google Scholar 

  • Yusta SC (2009) Different metaheuristic strategies to solve the feature selection problem. Pattern Recognit Lett 30:525–534

    Article  Google Scholar 

  • Zhao P, Rocha G, Yu B (2009) The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat 37:3468–3497

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Numbers JP15K17146, JP17K12983 and a Grant-in-Aid of Joint Research from the Institute of Information Science, Senshu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Takano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Takano, Y. & Nakahara, T. Investigating consumers’ store-choice behavior via hierarchical variable selection. Adv Data Anal Classif 13, 621–639 (2019). https://doi.org/10.1007/s11634-018-0327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-018-0327-0

Keywords

Mathematics Subject Classification

Navigation