Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models | Advances in Data Analysis and Classification
Skip to main content

Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed discrete variables. One of the tests used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test (BLRT). Although power analysis is rarely conducted for this test, it is important to identify, clarify, and specify the design issues that influence the statistical inference on the number of latent classes based on the BLRT. This paper proposes a computationally efficient ‘short-cut’ method to evaluate the power of the BLRT, as well as presents a procedure to determine a required sample size to attain a specific power level. Results of our numerical study showed that this short-cut method yields reliable estimates of the power of the BLRT. The numerical study also showed that the sample size required to achieve a specified power level depends on various factors of which the class separation plays a dominant role. In some situations, a sample size of 200 may be enough, while in others 2000 or more subjects are required to achieve the required power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Bock HH (1996) Probabilistic models in cluster analysis. Comput Stat Data Anal 23:6–28

    Article  MATH  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, New Jersey

    MATH  Google Scholar 

  • Collins LM, Lanza ST (2010) Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences. Wiley, New Jersey

    Google Scholar 

  • Davidson R, MacKinnon JG (2006) The power of bootstrap and asymptotic tests. J Econom 133:421–441

    Article  MathSciNet  MATH  Google Scholar 

  • Dias JG, Vermunt JK (2007) Latent class modeling of website users’ search patterns: implications for online market segmentation. J Retail Consum Serv 14:359–368

    Article  Google Scholar 

  • Everitt BS (1981) A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions. Multivar Behav Res 16:171–180

    Article  Google Scholar 

  • Genge E (2014) A latent class analysis of the public attitude towards the euro adoption in Poland. Adv Data Anal Classif 8:427–442

    Article  MathSciNet  Google Scholar 

  • Hartigan JA (1977) Distribution problems in clustering. In: Ryzin JV (ed) Classification and Clustering. Academic Press, New York, pp 45–72

    Google Scholar 

  • Holt JA, Macready GB (1989) A simulation study of the difference Chi-square statistic for comparing latent class models under violation of regularity conditions. Appl Psychol Meas 13:221–231

    Article  Google Scholar 

  • Jeffries NO (2003) A note on ’testing the number of components in a normal mixture. Biometrika 90:991–994

    Article  MathSciNet  Google Scholar 

  • Johnson VE, Rossell D (2010) On the use of non-local prior densities in Bayesian hypothesis tests. J R Stat Soc 27:143–170

    Article  MathSciNet  Google Scholar 

  • Langeheine R, Pannekoek J, van de Pol F (1996) Bootstrapping goodness-of-fit measures in categorical data analysis. Sociol Methods Res 24:492–616

    Article  Google Scholar 

  • Lazarsfeld PF, Henry NW (1968) Latent Structure Analysis. Houghton Mifflin, Boston

    MATH  Google Scholar 

  • Leask SJ, Vermunt JK, Done DJ, Crowd TJ, Blows M, Boks MP (2009) Beyond symptom dimensions: Schizophrenia risk factors for patient groups derived by latent class analysis. Schizophr Res 115:346–350

    Article  Google Scholar 

  • Lo YT, Mendell NR, Rubin DB (2001) Testing the number of components in a normal mixture. Biometrika 88:767–778

    Article  MathSciNet  MATH  Google Scholar 

  • Magidson J, Vermunt JK (2004) Latent class models. In: Kaplan D (ed) The sage handbook of quantitative methodology for the social sciences. Sage Publications, Thousand Oakes, pp 175–198

    Google Scholar 

  • McLachlan G (1987) On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Appl Stat J R Stat Soc 36:318–324

    Google Scholar 

  • McLachlan G, Basford K (1988) Mixture models: inference and applications to clustering. Marcel Dekker, New York

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Muthén LK, Muthén BO (1998–2010) Mplus User’s Guide. Sixth Edition, Muthén & Muthén, Los Angeles, CA

  • Nylund KL, Muthen M, Muthen BO (2007) Deciding on the number of classes in latent class analysis and growth mixture modeling: a monte carlo simulation study. Struct Equ Model 14:535–569

    Article  MathSciNet  Google Scholar 

  • Oberski D (2015) Beyond the number of classes: separating substantive from non-substantive dependence in latent class analysis. Adv Data Anal Classif. doi:10.1007/s11634-015-0211-0

    Google Scholar 

  • Rindskopf D (2002) The use of latent class analysis in medical diagnosis. Proceedings of the Annual Meeting of the American Statistical Association, American Statistical Association, Alexandria VA, pp 2912–2916

    Google Scholar 

  • Rubin DB (1981) The Bayesian bootstrap. Ann Stat 9(1):130–134

    Article  MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Self SG, Mauritsen RH, Ohara J (1992) Power calculations for likelihood ratio tests in generalized linear models. Biometrics 48:31–39

    Article  Google Scholar 

  • Shapiro A (1985) Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika 72:133–144

    Article  MathSciNet  MATH  Google Scholar 

  • Steiger JH, Shapiro A, Browne MW (1985) On the multivariate asymptotic distribution of sequential Chi-square statistics. Psychometrika 50:253–263

    Article  MathSciNet  MATH  Google Scholar 

  • Takane Y, van der Heijden PGM, Browne MW (2003) On likelihood ratio tests for dimensionality selection. In: Higuchi T, Iba Y, Ishiguro M (eds) Proceedings of Science of Modeling: The 30th Anniversary Meeting of the Information Criterion (AIC). Report on Research and Education 17. The Institute of Statistical Mathematics, Tokyo, pp 348–349

  • Tekle FB, Tan FEE, Berger MPF (2008) Maximin D-optimal designs for binary longitudinal responses. Comput Stat Data Anal 52(12):5253–5262

    Article  MathSciNet  MATH  Google Scholar 

  • Tollenaar N, Mooijaart A (2003) Type I errors and power of the parametric bootstrap goodness-of-fit test: full and limited information. Br J Math Stat Psychol 56:271–288

    Article  MathSciNet  Google Scholar 

  • Van der Heijden PGM, HitHart H, Dessens JAG (1997) A parametric bootstrap procedure to perform statistical tests in latent class analysis. In: Rost J, Langeheine R (eds) Applications of latent trait and latent class models in the social sciences. Waxman Muenster, New York, pp 190–202

    Google Scholar 

  • Vermunt JK (2010) Latent class modeling with covariates: two improved three-step approaches. Political Anal 18:450–469

    Article  Google Scholar 

  • Vermunt JK, Magidson J (2008) Manual for latent GOLD 4.5 syntax module. Statistical Innovations Inc, Belmont, MA

  • Vermunt JK, Magidson J (2013) Latent GOLD 5.0 Upgrade Manual. Statistical Innovations Inc, Belmont, MA

  • Wolfe JH (1970) Pattern clustering by multivariate mixture analysis. Multivar Behav Res 5:329–350

    Article  Google Scholar 

  • Zenor MJ, Srivastava RK (1993) Inferring market structure with aggregate data: a latent segment logit approach. J Mark Res 25:369–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fetene B. Tekle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekle, F.B., Gudicha, D.W. & Vermunt, J.K. Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models. Adv Data Anal Classif 10, 209–224 (2016). https://doi.org/10.1007/s11634-016-0251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-016-0251-0

Keywords

Mathematics Subject Classification