Quantile composite-based path modeling | Advances in Data Analysis and Classification Skip to main content
Log in

Quantile composite-based path modeling

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

The paper aims at introducing a quantile approach in the Partial Least Squares path modeling framework. This is a well known composite-based method for the analysis of complex phenomena measurable through a network of relationships among observed and unobserved variables. The proposal intends to enhance potentialities of the Partial Least Squares path models overcoming the classical exploration of average effects. The introduction of Quantile Regression and Correlation in the estimation phases of the model allows highlighting how and if the relationships among observed and unobserved variables change according to the explored quantile of interest. The proposed method is applied to two real datasets in the customer satisfaction measurement and in the sensory analysis framework but it proves to be useful also in other applicative contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Mode A takes the first component from a PLS regression, while Mode B takes all PLS regression components.

  2. The data set is included in the R package plspm Sanchez and Trinchera (2012).

  3. http://www.theacsi.org/the-american-customer-satisfaction-index.

References

  • Albers C (2010) PLS and success factor studies in marketing. In: Esposito Vinzi V, Chin W, Henseler J, Wang H (eds) Handbook of partial least squares (PLS): concepts, methods and applications. Springer, Berlin

  • Barrodale I, Roberts FDK (1974) Solution of an overdetermined system of equation in the l1 norm. Commun Assoc Comput Mach 17:319–320

    Google Scholar 

  • Benoit DF, Van den Poel D (2009) Benefits of quantile regression for the analysis of customer lifetime value in a contractual setting: an application in financial services. Expert Syst Appl 36:10475–10484

    Article  Google Scholar 

  • Buchinsky M (1994) Changes in the U.S. wage structure 1963–1987. Econometrica 62:405–458

    Article  MATH  Google Scholar 

  • Cleveland WS, Grosse E, Shyu WM (1992) Local regression models. In: Chambers JM, Hastie TJ (eds) Statistical models in S, Chapter 8. Wadsworth & Brooks, Cole

  • Davino C, Vistocco D (2007) The evaluation of University educational processes: a quantile regression approach. Statistica 67

  • Davino C, Vistocco D (2008) Quantile regression for the evaluation of student satisfaction. Ital J Appl Stat 20:179–196

    Google Scholar 

  • Davino C, Furno M, Vistocco D (2013) Quantile regression: theory and applications. In: Wiley Series in Probability and Statistics. Wiley, New York

  • Davino C, Romano R, Naes T (2015) The use of quantile regression in consumer studies. Food Qual Preference 40:230–239

    Article  Google Scholar 

  • ECSI Technical Committee (1998) European customer satisfaction index foundation and structure for harmonized national pilot projects. ECSI

  • Eide E, Showalter MH (1998) The effect of school quality on student performance: a quantile regression approach. Econom Lett 58:345–350

    Article  MATH  Google Scholar 

  • Eklöf JA (2000) European customer satisfaction index pan-European telecommunication sector report based on the pilot studies 1999. European Organization for Quality and European Foundation for Quality Management, Stockholm

    Google Scholar 

  • Escofier B, Pags J (1988) Analyses factorielles simples et multiples. Dunod, Paris

    Google Scholar 

  • Esposito Vinzi V, Russolillo G (2012) Partial least squares algorithms and methods. WIREs Comput Stat 5:1–19

  • Esposito Vinzi V, Guionot C, Squillacciotti S (2007) Two-step PLS regression for L-structured data: an application in the cosmetic industry. Stat Methods Appl 16:263–278

  • Esposito Vinzi V, Chin WW, Henseler J, Wang H (2010a) Handbook of partial least squares: concepts, methods and applications. Springer, New York

  • Esposito Vinzi V, Trinchera L, Amato S (2010b) PLS path modeling: recent developments and open issues for model assessment and improvement. In: Esposito Vinzi V, Chin W, Henseler J, Wang H (eds) Handbook of partial least squares (PLS): concepts, methods and applications. Springer, Berlin, pp 47–82

  • Fitzenberger B, Koenker R, Machado JAF (2002) Economic applications of quantile regression, series: studies in empirical economics. Physica, Heidelberg

    Book  Google Scholar 

  • Fox M, Rubin H (1964) Admissibility of quantile estimates of a single location parameter. Ann Math Stat 35(3):1019–1030

    Article  MathSciNet  MATH  Google Scholar 

  • Gould WW (1997) sg70: interquantile and simultaneous-quantile regression. Stata Tech Bull 38:14–22

    Google Scholar 

  • Guinot C, Latreille J, Tenenhaus M (2001) PLS path modeling and multiple table analysis. Application to the cosmetic habits of women in the Ile-de-France. Chemom Intell Lab Syst 58:247–259

    Article  Google Scholar 

  • Hagerty MR, Land KC (2007) Constructing summary indices of quality of life. A model for the effect of heterogeneous importance weights. Sociol Methods Res 35(4):455–496

    Article  MathSciNet  Google Scholar 

  • Hair J, Sarstedt M, Ringle C, Mena J (2012a) An assessment of the use of partial least squares structural equation modeling in marketing research. J Acad Market Sci 40:414–433

    Article  Google Scholar 

  • Hair J, Sarstedt M, Pieper T, Ringle C (2012b) The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long Range Plan 45:320–340

    Article  Google Scholar 

  • Hendricks W, Koenker R (1992) Hierarchical spline models for conditional quantiles and the demand for electricity. J Am Stat Assoc 93:58–68

    Article  Google Scholar 

  • Henseler J, Ringle CM, Sinkovics RR (2009) The use of partial least squares path modeling in international marketing. Adv Int Market 20:277–319

    Google Scholar 

  • Hsu SH, Chen WH, Hsieh MJ (2006) Robustness testing of PLS. LISREL, EQS and ANN-based SEM for measuring customer satisfaction. Total Qual Manag Bus Excell 17:355–372

    Article  Google Scholar 

  • Huarng K-H (2014) A quantile regression forecasting model for ICT development. Manag Decis 5

  • Kocherginsky M, He H, Mu Y (2005) Practical confidence intervals for regression quantiles. J Comput Graph Stat 14(1):41–55

    Article  MathSciNet  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

  • Koenker R, Basset GW (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Basset GW (1982a) Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50:43–61

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Basset GW (1982b) Tests for linear hypotheses and L1 estimation. Econometrica 46:33–50

    Article  Google Scholar 

  • Koenker R, d’Orey V (2001) Computing regression quantiles. Appl Stat 36:383–393

    Article  Google Scholar 

  • Koenker R, Hallock V (2001) Quantile regression. J Econ Perspect 15:143–156

    Article  Google Scholar 

  • Koenker R, Machado J (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94:1296–1310

    Article  MathSciNet  MATH  Google Scholar 

  • Kristensen K, Eskildsen J (2010) Design of PLS-based satisfaction studies. In: Esposito Vinzi V, Chin W, Henseler J, Wang H (eds) Handbook of partial least squares (PLS): concepts, methods and applications. Springer, Berlin

  • Lee L, Petter S, Fayard D, Robinson S (2011) On the use of partial least squares path modeling in accounting research. Int J Account Inf Syst 12:305–328

    Article  Google Scholar 

  • Li M (2014) Moving beyond the linear regression model. Advantages of the quantile regression model. J Manag (accepted)

  • Li G, Li Y, Tsai CL (2014) Quantile correlations and quantile autoregressive modeling. J Am Stat Assoc

  • Lohmöller” JB (1987) LVPLS program manual, version 1.8. In: Technical report, Zentralarchiv fur Empirische Sozialforschung, Universitat Zu Koln, Koln

  • Lohmöller JB (1989) Latent variable path modeling with partial least squares. Physica, Heildelberg

    Book  MATH  Google Scholar 

  • Naes T, Brockhoff PB, Tomic O (2010) Statistics for sensory and consumer science. Wiley, New York

  • Parzen MI, Wei L, Ying Z (1994) A resampling method based on pivotal estimating functions. Biometrika 18:341–350

    Article  MathSciNet  MATH  Google Scholar 

  • Ringle C, Sarstedt M, Straub D (2012) A critical look at the use of PLS-SEM. MIS Q 36:iii–xiv

  • Sanchez G, Trinchera L (2012) PLSPM: partial least squares data analysis methods. R package version 0.2-2. http://CRAN.R-project.org/package=plspm

  • Tenenhaus M (1998) La Regression PLS: Theorie et Pratique. Technip, Paris

  • Tenenhaus M, Esposito Vinzi V (2005) PLS regression, PLS path modeling and generalized Procustean analysis: a combined approach for multiblock analysis. J Chemom 19:145–153

    Article  Google Scholar 

  • Tenenhaus A, Tenenhaus M (2011) Regularized generalized canonical correlation analysis. Psychometrika 76(2):257–284

    Article  MathSciNet  MATH  Google Scholar 

  • Tenenhaus M, Esposito Vinzi V, Chatelin Y-M, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1):159–205

    Article  MathSciNet  MATH  Google Scholar 

  • Whittaker J, Whitehead C, Somers M (2005) The neglog transformation and quantile regression for the analysis of a large credit scoring database. J R Stat Soc Ser C Appl Stat 54:863–878

    Article  MathSciNet  MATH  Google Scholar 

  • Wold H (1982) Soft modeling: the basic design and some extensions. In: Jöoreskog KG, Wold H (eds) Systems under indirect observation. North-Holland, Amsterdam, pp 1–54

  • Wold H (1985) Partial least squares. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences. Wiley, New York

  • Wold S, Martens H, Wold H (1983) The multivariate calibration problem in chemistry solved by the PLS method. In: Ruhe A, Kagstrom B (eds) Proceedings of the conference on matrix pencils. Lectures notes in mathematics

Download references

Acknowledgments

The Authors wish to thank Pasquale Dolce from the University of Naples “Federico II” for his contribution in the implementation phase of QCPM and for his valuable help in running the first simulation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Davino.

Appendix

Appendix

See Tables 9 and 10.

Table 9 QCPM8 and PLSPM outer weights
Table 10 QCPM8 and PLSPM outer weights

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davino, C., Vinzi, V.E. Quantile composite-based path modeling. Adv Data Anal Classif 10, 491–520 (2016). https://doi.org/10.1007/s11634-015-0231-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-015-0231-9

Keywords

Mathematics Subject Classification

Navigation