Abstract
Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization (MMO). However, these approaches allocate the same computing resources for subspaces with different difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy (DRAS) with reinforcement learning for multimodal multi-objective optimization problems (MMOPs). In DRAS, relative contribution and improvement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the reinforcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better distributed equivalent Pareto optimal solutions in the decision space.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
S. L. Karri, L. C. De Silva, D. T. C. Lai, S. Y. Yong. Identification and classification of driving behaviour at signalized intersections using support vector machine. International Journal of Automation and Computing, vol. 18, no. 3, pp. 480–491, 2021. DOI: https://doi.org/10.1007/s11633-021-1295-y.
H. T. Ye, Z. Q. Li. PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution. International Journal of Automation and Computing, vol. 17, no. 6, pp. 867–872, 2020. DOI: https://doi.org/10.1007/s11633-015-0917-7.
W. Jia, W. Xia, Y. Zhao, H. Min, Y. X. Chen. 2D and 3D palmprint and palm vein recognition based on neural architecture search. International Journal of Automation and Computing, vol. 18, no. 3, pp. 377–409, 2021. DOI: https://doi.org/10.1007/s11633-021-1292-1.
A. Jaszkiewicz. On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment. IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 402–412, 2002. DOI: https://doi.org/10.1109/TEVC.2002.802873.
K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, vol. 7, no. 3, pp. 205–230, 1999. DOI: https://doi.org/10.1162/evco.1999.7.3.205.
Q. F. Zhang, H. Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007. DOI: https://doi.org/10.1109/TEVC.2007.892759.
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. DOI: https://doi.org/10.1109/4235.996017.
S. Lu, Y. M. Li, B. X. Ding. Multi-objective dimensional optimization of a 3-DOF translational PKM considering transmission properties. International Journal of Automation and Computing, vol. 16, no. 6, pp. 748–760, 2019. DOI: https://doi.org/10.1007/s11633-019-1184-9.
P. S. Oliveto, D. Sudholt, C. Zarges. On the benefits and risks of using fitness sharing for multimodal optimisation. Theoretical Computer Science, vol. 773, pp. 53–70, 2019. DOI: https://doi.org/10.1016/j.tcs.2018.07.007.
C. Y. Lin, W. H. Wu. Niche identification techniques in multimodal genetic search with sharing scheme. Advances in Engineering Software, vol. 33, no. 11–12, pp. 779–791, 2002. DOI: https://doi.org/10.1016/S0965-9978(02)00045-5.
R. Thomsen. Multimodal optimization using crowding-based differential evolution. In Proceedings of Congress on Evolutionary Computation, IEEE, Portland, USA, pp. 1382–1389, 2004. DOI: https://doi.org/10.1109/CEC.2004.1331058.
M. Q. Li, D. Lin, J. S. Kou. A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization. Applied Soft Computing, vol. 12, no. 3, pp. 975–987, 2012. DOI: https://doi.org/10.1016/j.asoc.2011.11.032.
J. P. Li, M. E. Balazs, G. T. Parks, P. J. Clarkson. A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation, vol. 10, no. 3, pp. 207–234, 2002. DOI: https://doi.org/10.1162/106365602760234081.
Q. Q. Fan, X. F. Yan. Solving multimodal multiobjective problems through zoning search. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 8, pp. 4836–4847, 2021. DOI: https://doi.org/10.1109/TSMC.2019.2944338.
K. Miettinen. Nonlinear Multiobjective Optimization, Boston, USA: Kluwer Academic Publishers, 1999.
J. J. Liang, C. T. Yue, B. Y. Qu. Multimodal multi-objective optimization: A preliminary study. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Vancouver, Canada, pp. 2454–2461, 2016. DOI: https://doi.org/10.1109/CEC.2016.7744093.
S. C. Maree, T. Alderliesten, P. A. N. Bosman. Real-valued evolutionary multi-modal multi-objective optimization by hill-valley clustering. In Proceedings of the Genetic and Evolutionary Computation Conference, Association for Computing Machinery, Prague, Czech Republic, pp. 568–576, 2019. DOI: https://doi.org/10.1145/3321707.3321759.
C. T. Yue, B. Y. Qu, J. Liang. A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Transactions on Evolutionary Computation, vol. 22, no. 5, pp. 805–817, 2018. DOI: https://doi.org/10.1109/TEVC.2017.2754271.
R. Tanabe, H. Ishibuchi. A decomposition-based evolutionary algorithm for multi-modal multi-objective optimization. In Proceedings of the 15th International Conference on Parallel Problem Solving from Nature, Springer, Coimbra, Portugal, pp. 249–261, 2018. DOI: https://doi.org/10.1007/978-3-319-99253-2_20.
R. Tanabe, H. Ishibuchi. A framework to handle multimodal multiobjective optimization in decomposition-based evolutionary algorithms. IEEE Transactions on Evolutionary Computation, vol. 24, no. 4, pp. 720–734, 2020. DOI: https://doi.org/10.1109/TEVC.2019.2949841.
Y. M. Peng, H. Ishibuchi. A decomposition-based large-scale multi-modal multi-objective optimization algorithm. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Glasgow, UK, pp. 1–8, 2020. DOI: https://doi.org/10.1109/CEC48606.2020.9185674.
R. Tanabe, H. Ishibuchi. A niching indicator-based multimodal many-objective optimizer. Swarm and Evolutionary Computation, vol. 49, pp. 134–146, 2019. DOI: https://doi.org/10.1016/j.swevo.2019.06.001.
Q. F. Zhang, W. D. Liu, H. Li. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Trondheim, Norway, pp. 203–208, 2009. DOI: https://doi.org/10.1109/CEC.2009.4982949.
Q. Kang, X. Y. Song, M. C. Zhou, L. Li. A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 12, pp. 2416–2423, 2019. DOI: https://doi.org/10.1109/TSMC.2018.2818175.
A. M. Zhou, Q. F. Zhang. Are all the subproblems equally important? Resource allocation in decomposition-baeed multiobjective evolutionary algorithms IEEE Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 52–64, 2016. DOI: https://doi.org/10.1109/TEVC.2015.2424251.
Q. Z. Lin, G. M. Jin, Y. P. Ma, K. C. Wong, C. A. Coello Coello, J. Q. Li, J. Y. Chen, J. Zhang. A diversrty-enhanced resource allocation strategy for decomposition-based multiobjective evolutionary algorithm. IEEE Transactions on Cybernetics, vol. 48, no. 8, pp. 2388–2401, 2018. DOI: https://doi.org/10.1109/TCYB.2017.2739185.
X. Y. Caí, Y. X. Li, Z. Fan, Q. F. Zhang. An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Transactions on Evolutionary Computation, vol. 19, no. 4, pp. 508–523, 2015. DOI: https://doi.org/10.1109/TEVC.2014.2350995.
Y. Xiang, Y. R. Zhou, L. P. Tang, Z. F. Chen. A decomposition-based many-objective artificial bee colony algorithm. IEEE Transactions on Cybernetics, vol. 49, no. 1, pp. 287–300, 2019. DOI: https://doi.org/10.1109/TCYB.2017.2772250.
K. Li, A. Fialho, S. Kwong, Q. F. Zhang. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, vol. 18, no. 1, pp. 114–130, 2014. DOI: https://doi.org/10.1109/TEVC.2013.2239648.
H. L. Liu, L. Chen, Q. F. Zhang, K. Deb. Adaptively allocating search effort in challenging many-objective optimization problems. IEEE Transactions on Evolutionary Computation, vol. 22, no. 3, pp. 433–448, 2018. DOI: https://doi.org/10.1109/TEVC.2017.2725902.
H. K. Chen, G. H. Wu, W. Pedrycz, P. N. Suganthan, L. N. Xing, X. M. Zhu. An adaptive resource allocation strategy for objective space partition-based multiobjective optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 3, pp. 1507–1522, 2021. DOI: https://doi.org/10.1109/TSMC.2019.2898456.
J. J. Zhou, L. Gao, X. Y. Li. Ensemble of dynamic resource allocation strategies for decomposition-based multi-objective optimization. IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 710–723, 2021. DOI: https://doi.org/10.1109/TEVC.2021.3060899.
F. van den Bergh, A. P. Engelbrecht. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225–239, 2004. DOI: https://doi.org/10.1109/TEVC.2004.826069.
Y. J. Shi, H. F. Teng, Z. Q. Li. Cooperative co-evolutionary differential evolution for function optimization. In Proceedings of the 1st International Conference on Advances in Natural Computation, Springer, Changsha, China, pp. 1080–1088, 2005. DOI: https://doi.org/10.1007/11539117_147.
J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006. DOI: https://doi.org/10.1109/TEVC.2005.857610.
Z. Y. Yang, K. Tang, X. Yao. Large scale evolutionary optimization using cooperative coevolution. Information Sciences, vol. 178, no. 15, pp. 2985–2999, 2008. DOI: https://doi.org/10.1016/j.ins.2008.02.017.
M. Yang, M. N. Omidvar, C. H. Li, X. D. Li, Z. H. Cai, B. Kazimipour, X. Yao. Efficient resource allocation in cooperative co-evolution for large-scale global optimization. IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp. 493–505, 2017. DOI: https://doi.org/10.1109/TEVC.2016.2627581.
Y. H. Jia, W. N. Chen, T. L. Gu, H. X. Zhang, H. Q. Yuan, S. Kwong, J. Zhang. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization. IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 188–202, 2019. DOI: https://doi.org/10.1109/TEVC.2018.2817889.
X. N. Shen, Y. N. Guo, A. M. Li. Cooperative coevolution with an improved resource allocation for large-scale multi-objective software project scheduling. Applied Soft Computing, vol. 88, Article number 106059, 2020. DOI: https://doi.org/10.1016/j.asoc.2019.106059.
Y. H. Jia, Y. Mei, M. J. Zhang. Contribution-based cooperative co-evolution for nonseparable large-scale problems with overlapping subcomponents. IEEE Transactions on Cybernetics, to be published. DOI: https://doi.org/10.1109/TCYB.2020.3025577.
M. G. Gong, Z. D. Tang, H. Li, J. Zhang. Evolutionary multitasking with dynamic resource allocating strategy. IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 858–869, 2019. DOI: https://doi.org/10.1109/TEVC.2019.2893614.
Y. Wang, H. C. Tan, Y. K. Wu, J. K. Peng. Hybrid electric vehicle energy management with computer vision and deep reinforcement learning. IEEE Transactions on Industrial Informatics, vol. 17, no. 6, pp. 3857–3868, 2021. DOI: https://doi.org/10.1109/TII.2020.3015748.
Y. Deng, F. Bao, Y. Y. Kong, Z. Q. Ren, Q. H. Dai. Deep direct reinforcement learning for financial signal representation and trading. IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 3, pp. 653–664, 2017. DOI: https://doi.org/10.1109/TNNLS.2016.2522401.
Y. X. Wang, K. Wang, H. W. Huang, T. M. Miyazaki, S. Guo. Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications. IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 976–986, 2019. DOI: https://doi.org/10.1109/TII.2018.2883991.
W. Y. Wang, J. W. Li, X. D. He. Deep reinforcement learning for NLP. in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, Association for Computational Linguistics, Melbourne, Australia, pp. 19–21, 2018. DOI: https://doi.org/10.18653/v1/P18-5007.
Z. Q. Wan, C. Jiang, M. Fahad, Z. Ni, Y. Guo, H. B. He. Robot-assisted pedestrian regulation based on deep reinforcement learning. IEEE Transactions on Cybernetics, vol. 50, no. 4, pp. 1669–1682, 2020. DOI: https://doi.org/10.1109/TCYB.2018.2878977.
E. Mocanu, D. C. Mocanu, P. H. Nguyen, A. Liotta, M. E. Webber, M. Gibescu, J. G. Slootweg. On-line building energy optimization using deep reinforcement learning. IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3698–3708, 2019. DOI: https://doi.org/10.1109/TSG.2018.2834219.
X. Y. Zhang, Y. Tian, Y. C. Jin. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, vol. 19, no. 6, pp. 761–776, 2015. DOI: https://doi.org/10.1109/TEVC.2014.2378512.
K. X. Wei, A. Aviles-Rivero, J. W. Liang, Y. Fu, C. B. Schonlieb, H. Huang. Tuning-free plug-and-play proximal algorithm for inverse imaging problems. In Proceedings of the 37th International Conference on Machine Learning, ICML, Vienna, Austria, pp. 10158–10169, 2020.
J. Liang, B. Y. Qu, D. W. Gong, C. T. Yue. Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization. Technical Report, Zhengzhou University, China, 2019. DOI: https://doi.org/10.1314/2.2.33423.64164.
E. Zitzler, L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999. DOI: https://doi.org/10.1109/4235.797969.
S. Bandyopadhyay, S. K. Pal, B. Aruna. Multiobjective GAs, quantitative indices, and pattern classification. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 34, no. 5, pp. 2088–2099, 2004. DOI: https://doi.org/10.1109/TSMCB.2004.834438.
B. Y. Qu, C. Li, J. Liang, L. Yan, K. J. Yu, Y. S. Zhu. A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems. Applied Soft Computing, vol. 86, Article number 105886, 2020. DOI: https://doi.org/10.1016/j.asoc.2019.105886.
M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, vol. 32, no. 200, pp. 675–701, 1937. DOI: https://doi.org/10.1080/01621459.1937.10503522.
Y. Liu, H. Ishibuchi, G. G. Yen, Y. Nojima, N. Masuyama. Handling imbalance between convergence and diversity in the decision space in evolutionary multi-modal multi-objective optimization. IEEE Transactions on Evolutionary Computation, vol. 24, no. 3, pp. 551–565, 2020. DOI: https://doi.org/10.1109/TEVC.2019.2938557.
Y. P. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, K. Shang. A double-niched evolutionary algorithm and its behavior on polygon-based problems. In Proceedings of the 15th International Conference on Parallel Problem Solving from Nature, Springer, Coimbra, Portugal, pp. 262–273, 2018. DOI: https://doi.org/10.1007/978-3-319-99253-2_21.
Y. P. Liu, G. G. Yen, D. W. Gong. A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies. IEEE Transactions on Evolutionary Computation, vol. 23, no. 4, pp. 660–674, 2019. DOI: https://doi.org/10.1109/TEVC.2018.2879406.
K. Deb, S. Tiwari. Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, vol. 185, no. 3, pp. 1062–1087, 2008. DOI: https://doi.org/10.1016/j.ejor.2006.06.042.
A. M. Zhou, Q. F. Zhang, Y. C. Jin. Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1167–1189, 2009. DOI: https://doi.org/10.1109/TEVC.2009.2021467.
Author information
Authors and Affiliations
Corresponding author
Additional information
Colored figures are available in the online version at https://link.springer.com/journal/11633
Qian-Long Dang received the B. Eng. degree in applied mathematics from Henan University of Technology, China in 2016. He is currently a Ph. D. degree candidate in School of Mathematics and Statistics, Xidian University, China.
His research interests include computational intelligence, swarm intelligence, evolution algorithm, and their applications.
Wei Xu received the B. Eng. degree in applied mathematics from Inner Mongolia University of Science and Technology, China in 2018. He is currently a master student in School of Mathematics and Statistics, Xidian University, China.
His research interests include computational intelligence, swarm intelligence, evolution algorithm, and their applications.
Yang-Fei Yuan received the B. Eng. degree in applied mathematics from Inner Mongolia University of Science and Technology, China in 2018. He is currently a master student in School of Mathematics and Statistics, Xidian University, China.
His research interests include computational intelligence, swarm intelligence, evolution algorithm, and their applications.
Rights and permissions
About this article
Cite this article
Dang, QL., Xu, W. & Yuan, YF. A Dynamic Resource Allocation Strategy with Reinforcement Learning for Multimodal Multi-objective Optimization. Mach. Intell. Res. 19, 138–152 (2022). https://doi.org/10.1007/s11633-022-1314-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11633-022-1314-7