Zusammenfassung
Moderne kryptographische Algorithmen gelten als extrem sicher gegenüber allen heute technisch realisierbaren Angriffen – zumindest dann, wenn Angreifer nicht von Implementierungsschwächen profitieren können. Seitenkanalangriffe bilden eine wichtige Klasse von Angriffen, die Implementierungsschwachstellen von kryptographischen Implementierungen ausnutzen.
Literatur
[BoDL97] Boneh, D., DeMillo, R., Lipton, R: On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (Hrsg.): Eurocrypt ‘97, Springer, LNCS 1233, 1997, 37-51.
[BrBo03] Brumley, D., Boneh, D.: Remote Timing Attacks are Practical. In: Proceedings of the 12th USENIX Security Symposion, USENIX Association, 2003.
[BuPi19] Bursztein, E., Picod, J.-M.: A hacker guide to deep-learning based side channel attacks. DEFCON 2019 https://elie.net/talk/a-hackerguide-to-deep-learning-based-side-channel-attacks/
[CaDP17] Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (Hrsg.): CHES 2017, Springer, LNCS 10529, 2017, 45-68.
[ChRR02] Chari S., Rao J.R., Rohatgi P.: Template Attacks. In: Kaliski Jr. B., Paar, Koç Ç.K., Paar, C. (Hrsg.): CHES 2002, Springer, LNCS 2523, 2002, 13-28.
[ChKu13] Choudary, O., Kuhn, M.: Efficient Template Attacks. In: Francillon, A.,Rohatgi, P. (Hrsg.): CARDIS 2013, Springer, LNCS 8419, 2014, 253–270.
[DPRS11] Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. Journal of Cryptographic Engineering 1 (2011), 123-144.
[GPPT15] Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing Keys from a PC Using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation. In: Güneysu, T., Handschuh, H. (Hrsg.): CHES 2015, Springer, LNCS 9293, 2015, 207-228.
[GoJS20a] Gohr, A., Jacob, S., Schindler, W.: Efficient Solutions of the CHES 2018 AES Challenge Using Deep Residual Neural Networks and Knowledge Distillation on Adversarial Examples. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2020/165
[IBM54] 701 Translator, IBM Press Release vom 8.1.1954
Kocher, P: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (Hrsg.): Crypto 1996. Springer, LNCS 1109, 1996, 104–113.
[KoJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (Hrsg.): Crypto 1999, Springer, LNCS 1666, 1999, 388-397.
[Maye00] Mayer-Sommer, R.: Smartly Analyzing the Simplicity and the Power of Simple Power Analysis on Smartcards. In: Koç Ç.K., Paar C. (Hrsg.): CHES 2000, Springer, LNCS 1965, 2000,78-92.
[Melt18] Meltdown and Spectre, https://meltdownattack.com.
[Mena1842] Menabrea, L.F.: Sketch of The Analytical Engine by Charles Babbage, with Notes by the Translator, Ada Augusta, Countess of Lovelace, 1842.
[Murr61] Murray, A.E.: Perceptron applications in photo interpretation. Photogrammetric Engineering 27.4 (1961).
[NSA07] TEMPEST: A Signal Problem. Approved for Release by NSA on September 27, 2007, http://www.nsa.gov/public_info/_files/cryptologic_spectrum/tempest.pdf
[PSB+18] Prouff, E., Strullu, Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2018/053
[Samu59] Samuel, A.L.: Some Studies in Machine Learning Using the Game of Checkers, IBM Journal of Research and Development, 3 (3), 210-229, 1959.
[ScLP05] Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao J.R., Sunar B. (Hrsg.) CHES 2005, Springer, LNCS 3659, 2005, 30-46.
[HoSc97] Hochreiter, S., Schmidhuber, J.: LSTM can solve hard long time lag problems. Advances in neural information processing systems. 1997.
[ACM18] American Association for Computing Machinery: Fathers of the Deep Learning Revolution Receive ACM A.M. Turing Award, https://awards.acm.org/about/2018-turing
[Silv17] Silver, D. et al. “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.” arXiv preprint arXiv:1712.01815 (2017).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gohr, A., Klein, D. & Schindler, W. Verräterischer Stromverbrauch . Datenschutz Datensich 44, 431–435 (2020). https://doi.org/10.1007/s11623-020-1300-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11623-020-1300-6