A new mixed integer programming approach for optimization over the efficient set of a multiobjective linear programming problem | Optimization Letters Skip to main content
Log in

A new mixed integer programming approach for optimization over the efficient set of a multiobjective linear programming problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper concerns an optimization problem over the efficient set of a multiobjective linear programming problem. We propose and solve an equivalent mixed integer programming (MIP) problem to compute an optimal solution to the original problem. Compared with the previous MIP approach by Sun, the proposed approach relaxes a strong assumption and reduces the numbers of constraints and binary variables of the MIP problem. By conducting numerical experiments, we find that the proposed approach is more accurate and faster than the previous MIP approach. The proposed MIP problem can be efficiently solved with current state-of-the-art MIP solvers when the objective function is convex or linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The source code can be found at the author’s website: https://kuanlyu.github.io/otherwise/.

References

  1. An, L.T.H., Tao, P.D., Muu, L.D.: Numerical solution for optimization over the efficient set by dc optimization algorithms. Oper. Res. Lett. 19(3), 117–128 (1996)

    Article  MathSciNet  Google Scholar 

  2. Benson, H.P.: An algorithm for optimizing over the weakly-efficient set. Eur. J. Oper. Res. 25(2), 192–199 (1986)

    Article  MathSciNet  Google Scholar 

  3. Benson, H.P.: A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set. J. Optim. Theory Appl. 73(1), 47–64 (1992)

    Article  MathSciNet  Google Scholar 

  4. Benson, H.P.: An outcome space algorithm for optimization over the weakly efficient set of a multiple objective nonlinear programming problem. J. Glob. Optim. 52(3), 553–574 (2012)

    Article  MathSciNet  Google Scholar 

  5. Benson, H.P., Lee, D.: Outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem. J. Optim. Theory Appl. 88(1), 77–105 (1996)

    Article  MathSciNet  Google Scholar 

  6. Bolintineanu, S.: Minimization of a quasi-concave function over an efficient set. Math. Program. 61(1–3), 89–110 (1993)

    Article  MathSciNet  Google Scholar 

  7. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem, vol. 60. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  8. Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Glob. Optim. 7(3), 261–277 (1995)

    Article  MathSciNet  Google Scholar 

  9. Hu, J., Mitchell, J.E., Pang, J.S., Yu, B.: On linear programs with linear complementarity constraints. J. Glob. Optim. 53(1), 29–51 (2012)

    Article  MathSciNet  Google Scholar 

  10. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A.: 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art. Springer, Berlin (2009)

    MATH  Google Scholar 

  11. Khachiyan, L.G.: Polynomial algorithms in linear programming. USSR Comput. Math. Math. Phys. 20(1), 53–72 (1980)

    Article  MathSciNet  Google Scholar 

  12. Liu, Z., Ehrgott, M.: Primal and dual algorithms for optimization over the efficient set. Optimization 67(10), 1661–1686 (2018)

    Article  MathSciNet  Google Scholar 

  13. Lu, K., Mizuno, S., Shi, J.: A mixed integer programming approach for the minimum maximal flow. J. Oper. Res. Soc. Jpn. 64(4), 261–271 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Lu, K., Mizuno, S., Shi, J.: Optimization over the efficient set of a linear multiobjective programming: Algorithm and applications. RIMS Kôkyûroku 2108, 70–79 (2019)

    Google Scholar 

  15. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  16. Muu, L.D., Thuy, L.Q.: On dc optimization algorithms for solving minmax flow problems. Math. Methods Oper. Res. 80(1), 83–97 (2014)

    Article  MathSciNet  Google Scholar 

  17. Philip, J.: Algorithms for the vector maximization problem. Math. Program. 2(1), 207–229 (1972)

    Article  MathSciNet  Google Scholar 

  18. Phong, T.Q., Tuyen, J.: Bisection search algorithm for optimizing over the efficient set. Vietnam J. Math. 28, 217–226 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, London (1998)

    MATH  Google Scholar 

  20. Shi, J., Yamamoto, Y.: A global optimization method for minimum maximal flow problem. Acta Math. Vietnam. 22(1), 271–287 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Shigeno, M., Takahashi, I., Yamamoto, Y.: Minimum maximal flow problem: an optimization over the efficient set. J. Glob. Optim. 25(4), 425–443 (2003)

    Article  MathSciNet  Google Scholar 

  22. Sun, E.: On optimization over the efficient set of a multiple objective linear programming problem. J. Optim. Theory Appl. 172(1), 236–246 (2017)

    Article  MathSciNet  Google Scholar 

  23. Thach, P., Konno, H., Yokota, D.: Dual approach to minimization on the set of pareto-optimal solutions. J. Optim. Theory Appl. 88(3), 689–707 (1996)

    Article  MathSciNet  Google Scholar 

  24. Tuy, H.: Convex Analysis and Global Optimization. Springer, Berlin (2016)

    Book  Google Scholar 

  25. Wendell, R.E., Lee, D.: Efficiency in multiple objective optimization problems. Math. Program. 12(1), 406–414 (1977)

    Article  MathSciNet  Google Scholar 

  26. Yamamoto, Y.: Optimization over the efficient set: overview. J. Glob. Optim. 22(1–4), 285–317 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for valuable comments and suggestions. This research is supported in part by Grant-in-Aid for Science Research (A) 19H00808 and Grant-in-Aid for Scientific Research (C) 17K01272 of Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Mizuno, S. & Shi, J. A new mixed integer programming approach for optimization over the efficient set of a multiobjective linear programming problem. Optim Lett 14, 2323–2333 (2020). https://doi.org/10.1007/s11590-020-01554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01554-7

Keywords

Navigation