Abstract
Computational experiments with DEA models show that many inefficient units are projected onto the weakly efficient parts of the frontier when efficiency scores are computed. This fact disagrees with the main concept of the DEA approach, since efficiency scores of inefficient units have to be measured relative to efficient units. As a result, inaccurate efficiency scores may be obtained. In our previous work, we developed an algorithm for smoothing the frontier based on using the notion of terminal units. Moreover, it turned out that the smoothness of the frontier can be measured. For this reason, we introduced the notion of a smoothing factor in order to measure the smoothness of the frontier. This factor has to satisfy the following principles: (a) it does not depend on units of variables measurement in DEA models; (b) increased smoothness corresponds to smaller value of the smoothing factor. Our theoretical results are confirmed by computational experiments using a real-life data set.
Similar content being viewed by others
References
Allen, R., Thanassoulis, E.: Improving envelopment in data envelopment analysis. Eur J Oper Res 154(2), 363–379 (2004). https://doi.org/10.1016/S0377-2217(03)00175-9
Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30(9), 1078–1092 (1984). https://doi.org/10.1287/mnsc.30.9.1078
Banker, R.D., Thrall, R.: Estimation of returns to scale using data envelopment analysis. Eur J Oper Res 62(1), 74–84 (1992). https://doi.org/10.1016/0377-2217(92)90178-C
Bessent, A., Bessent, W., Elam, J., Clark, T.: Efficiency frontier determination by constrained facet analysis. Oper Res 36(5), 785–796 (1988). https://doi.org/10.1287/opre.36.5.785
Bougnol, M.L., Dulá, J.H.: Anchor points in DEA. Eur J Oper Res 192(2), 668–676 (2009). https://doi.org/10.1016/j.ejor.2007.10.034
Charnes, A., Cooper, W.W., Huang, Z.M., Sun, D.B.: Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks. J Econom 46(1–2), 73–91 (1990). https://doi.org/10.1016/0304-4076(90)90048-X
Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur J Oper Res 2(6), 429–444 (1978). https://doi.org/10.1016/0377-2217(78)90138-8
Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-45283-8
Dyson, R.G., Thanassoulis, E.: Reducing weight flexibility in data envelopment analysis. J Oper Res Soc 39(6), 563–576 (1988). https://doi.org/10.1057/jors.1988.96
Edvardsen, D.F., Førsund, F.R., Kittelsen, S.A.C.: Far out or alone in the crowd: a taxonomy of peers in DEA. J Product Anal 29(3), 201–210 (2008). https://doi.org/10.1007/s11123-007-0066-2
Farrell, M.J.: The measurement of productive efficiency. J R Stat Soc 120, 253–281 (1957). https://doi.org/10.2307/2343100
Goldman, A.J.: Resolution and separation theorems for polyhedral convex sets. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems. Annals of Mathematics Studies, vol. 38, pp. 41–52. Princeton University Press, Princeton (1956)
Green, R.H., Doyle, J.R., Cook, W.D.: Efficiency bounds in data envelopment analysis. Eur J Oper Res 89(3), 482–490 (1996). https://doi.org/10.1016/0377-2217(95)00043-7
Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: Terminal units in DEA: definition and determination. J Product Anal 43(2), 151–164 (2015). https://doi.org/10.1007/s11123-013-0375-6
Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: Improving the frontier in DEA models. Dokl Math 94(3), 715–719 (2016). https://doi.org/10.1134/S1064562416060181
Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: On comparison of different sets of units used for improving the frontier in DEA models. Ann Oper Res 250(1), 5–20 (2017). https://doi.org/10.1007/s10479-015-1875-8
Krivonozhko, V.E., Utkin, O.B., Safin, M.M., Lychev, A.V.: On some generalization of the DEA models. J Oper Res Soc 60(11), 1518–1527 (2009). https://doi.org/10.1057/jors.2009.64
Krivonozhko, V.E., Utkin, O.B., Volodin, A.V., Sablin, I.A.: About the structure of boundary points in DEA. J Oper Res Soc 56(12), 1373–1378 (2005). https://doi.org/10.1057/palgrave.jors.2602009
Krivonozhko, V.E., Utkin, O.B., Volodin, A.V., Sablin, I.A., Patrin, M.V.: Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods. J Oper Res Soc 55(10), 1049–1058 (2004). https://doi.org/10.1057/palgrave.jors.2601759
Lang, P., Yolalan, O.R., Kettani, O.: Controlled envelopment by face extension in DEA. J Oper Res Soc 46(4), 473–491 (1995). https://doi.org/10.1057/jors.1995.66
Motzkin, T.S.: Beiträge zur theorie der linearen ungleichungen. Ph.D. thesis, Universität Basel, Jerusalem, Israel (1936)
Olesen, O.B., Petersen, N.C.: Indicators of ill-conditioned data sets and model misspecification in data envelopment analysis: an extended facet approach. Manag Sci 42(2), 205–219 (1996)
Olesen, O.B., Petersen, N.C.: Facet analysis in data envelopment analysis. In: Zhu, J. (ed.) Data Envelopment Analysis: A Handbook of Models and Methods, vol. 38, pp. 145–190. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7553-9_6
Olesen, O.B., Petersen, N.C.: Stochastic data envelopment analysis—a review. Eur J Oper Res 251(1), 2–21 (2016). https://doi.org/10.1016/j.ejor.2015.07.058
Seiford, L.H., Trall, R.M.: Recent developments in DEA: the mathematical programming approach to frontier analysis. J Econom 46(1–2), 7–38 (1990). https://doi.org/10.1016/0304-4076(90)90045-U
Thanassoulis, E., Allen, R.: Simulating weight restrictions in data envelopment analysis by means of unobserved DMUs. Manag Sci 44(4), 586–594 (1998). https://doi.org/10.1287/mnsc.44.4.586
Thanassoulis, E., Kortelainen, M., Allen, R.: Improving envelopment in data envelopment analysis under variable returns to scale. Eur J Oper Res 218(1), 175–185 (2012). https://doi.org/10.1016/j.ejor.2011.10.009
Thompson, R.G., Singleton Jr., F.D., Thrall, R.M., Smith, B.A.: Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces 16(6), 35–49 (1986). https://doi.org/10.1287/inte.16.6.35
Acknowledgements
This work was supported by the Russian Science Foundation (Project No. 17-11-01353). The authors thank two anonymous referees for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krivonozhko, V.E., Førsund, F.R. & Lychev, A.V. Measuring the smoothness of the DEA frontier. Optim Lett 13, 1871–1884 (2019). https://doi.org/10.1007/s11590-018-1329-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-018-1329-8