Measuring the smoothness of the DEA frontier | Optimization Letters Skip to main content

Advertisement

Log in

Measuring the smoothness of the DEA frontier

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Computational experiments with DEA models show that many inefficient units are projected onto the weakly efficient parts of the frontier when efficiency scores are computed. This fact disagrees with the main concept of the DEA approach, since efficiency scores of inefficient units have to be measured relative to efficient units. As a result, inaccurate efficiency scores may be obtained. In our previous work, we developed an algorithm for smoothing the frontier based on using the notion of terminal units. Moreover, it turned out that the smoothness of the frontier can be measured. For this reason, we introduced the notion of a smoothing factor in order to measure the smoothness of the frontier. This factor has to satisfy the following principles: (a) it does not depend on units of variables measurement in DEA models; (b) increased smoothness corresponds to smaller value of the smoothing factor. Our theoretical results are confirmed by computational experiments using a real-life data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, R., Thanassoulis, E.: Improving envelopment in data envelopment analysis. Eur J Oper Res 154(2), 363–379 (2004). https://doi.org/10.1016/S0377-2217(03)00175-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30(9), 1078–1092 (1984). https://doi.org/10.1287/mnsc.30.9.1078

    Article  MATH  Google Scholar 

  3. Banker, R.D., Thrall, R.: Estimation of returns to scale using data envelopment analysis. Eur J Oper Res 62(1), 74–84 (1992). https://doi.org/10.1016/0377-2217(92)90178-C

    Article  MATH  Google Scholar 

  4. Bessent, A., Bessent, W., Elam, J., Clark, T.: Efficiency frontier determination by constrained facet analysis. Oper Res 36(5), 785–796 (1988). https://doi.org/10.1287/opre.36.5.785

    Article  MATH  Google Scholar 

  5. Bougnol, M.L., Dulá, J.H.: Anchor points in DEA. Eur J Oper Res 192(2), 668–676 (2009). https://doi.org/10.1016/j.ejor.2007.10.034

    Article  MathSciNet  MATH  Google Scholar 

  6. Charnes, A., Cooper, W.W., Huang, Z.M., Sun, D.B.: Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks. J Econom 46(1–2), 73–91 (1990). https://doi.org/10.1016/0304-4076(90)90048-X

    Article  MATH  Google Scholar 

  7. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur J Oper Res 2(6), 429–444 (1978). https://doi.org/10.1016/0377-2217(78)90138-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-45283-8

  9. Dyson, R.G., Thanassoulis, E.: Reducing weight flexibility in data envelopment analysis. J Oper Res Soc 39(6), 563–576 (1988). https://doi.org/10.1057/jors.1988.96

    Article  Google Scholar 

  10. Edvardsen, D.F., Førsund, F.R., Kittelsen, S.A.C.: Far out or alone in the crowd: a taxonomy of peers in DEA. J Product Anal 29(3), 201–210 (2008). https://doi.org/10.1007/s11123-007-0066-2

    Article  Google Scholar 

  11. Farrell, M.J.: The measurement of productive efficiency. J R Stat Soc 120, 253–281 (1957). https://doi.org/10.2307/2343100

    Article  Google Scholar 

  12. Goldman, A.J.: Resolution and separation theorems for polyhedral convex sets. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems. Annals of Mathematics Studies, vol. 38, pp. 41–52. Princeton University Press, Princeton (1956)

    Google Scholar 

  13. Green, R.H., Doyle, J.R., Cook, W.D.: Efficiency bounds in data envelopment analysis. Eur J Oper Res 89(3), 482–490 (1996). https://doi.org/10.1016/0377-2217(95)00043-7

    Article  MATH  Google Scholar 

  14. Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: Terminal units in DEA: definition and determination. J Product Anal 43(2), 151–164 (2015). https://doi.org/10.1007/s11123-013-0375-6

    Article  Google Scholar 

  15. Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: Improving the frontier in DEA models. Dokl Math 94(3), 715–719 (2016). https://doi.org/10.1134/S1064562416060181

    Article  MathSciNet  MATH  Google Scholar 

  16. Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: On comparison of different sets of units used for improving the frontier in DEA models. Ann Oper Res 250(1), 5–20 (2017). https://doi.org/10.1007/s10479-015-1875-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Krivonozhko, V.E., Utkin, O.B., Safin, M.M., Lychev, A.V.: On some generalization of the DEA models. J Oper Res Soc 60(11), 1518–1527 (2009). https://doi.org/10.1057/jors.2009.64

    Article  MATH  Google Scholar 

  18. Krivonozhko, V.E., Utkin, O.B., Volodin, A.V., Sablin, I.A.: About the structure of boundary points in DEA. J Oper Res Soc 56(12), 1373–1378 (2005). https://doi.org/10.1057/palgrave.jors.2602009

    Article  MATH  Google Scholar 

  19. Krivonozhko, V.E., Utkin, O.B., Volodin, A.V., Sablin, I.A., Patrin, M.V.: Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods. J Oper Res Soc 55(10), 1049–1058 (2004). https://doi.org/10.1057/palgrave.jors.2601759

    Article  MATH  Google Scholar 

  20. Lang, P., Yolalan, O.R., Kettani, O.: Controlled envelopment by face extension in DEA. J Oper Res Soc 46(4), 473–491 (1995). https://doi.org/10.1057/jors.1995.66

    Article  MATH  Google Scholar 

  21. Motzkin, T.S.: Beiträge zur theorie der linearen ungleichungen. Ph.D. thesis, Universität Basel, Jerusalem, Israel (1936)

  22. Olesen, O.B., Petersen, N.C.: Indicators of ill-conditioned data sets and model misspecification in data envelopment analysis: an extended facet approach. Manag Sci 42(2), 205–219 (1996)

    Article  Google Scholar 

  23. Olesen, O.B., Petersen, N.C.: Facet analysis in data envelopment analysis. In: Zhu, J. (ed.) Data Envelopment Analysis: A Handbook of Models and Methods, vol. 38, pp. 145–190. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7553-9_6

    Google Scholar 

  24. Olesen, O.B., Petersen, N.C.: Stochastic data envelopment analysis—a review. Eur J Oper Res 251(1), 2–21 (2016). https://doi.org/10.1016/j.ejor.2015.07.058

    Article  MathSciNet  MATH  Google Scholar 

  25. Seiford, L.H., Trall, R.M.: Recent developments in DEA: the mathematical programming approach to frontier analysis. J Econom 46(1–2), 7–38 (1990). https://doi.org/10.1016/0304-4076(90)90045-U

    Article  MathSciNet  MATH  Google Scholar 

  26. Thanassoulis, E., Allen, R.: Simulating weight restrictions in data envelopment analysis by means of unobserved DMUs. Manag Sci 44(4), 586–594 (1998). https://doi.org/10.1287/mnsc.44.4.586

    Article  MATH  Google Scholar 

  27. Thanassoulis, E., Kortelainen, M., Allen, R.: Improving envelopment in data envelopment analysis under variable returns to scale. Eur J Oper Res 218(1), 175–185 (2012). https://doi.org/10.1016/j.ejor.2011.10.009

    Article  MathSciNet  MATH  Google Scholar 

  28. Thompson, R.G., Singleton Jr., F.D., Thrall, R.M., Smith, B.A.: Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces 16(6), 35–49 (1986). https://doi.org/10.1287/inte.16.6.35

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 17-11-01353). The authors thank two anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Krivonozhko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivonozhko, V.E., Førsund, F.R. & Lychev, A.V. Measuring the smoothness of the DEA frontier. Optim Lett 13, 1871–1884 (2019). https://doi.org/10.1007/s11590-018-1329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1329-8

Keywords

Navigation