Abstract
We present a new theorem to lift facets of the vertex packing problem. We prove the result and analyse its implications, showing that it generalizes a previous lifting theorem that was proved in 1983. The theorem is illustrated with some examples. Finally, we introduce two new families of facet-defining graphs that can be obtained as a consequence of this new lifting.
Similar content being viewed by others
References
Balas, E., Padberg, M.W.: Set partitioning: a survey. SIAM Rev. 18(4), 710–760 (1976)
Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. Handb. of Comb. Optim., pp. 1–74. Springer, New York (1999)
Cornaz, D., Jost, V.: A one-to-one correspondence between colorings and stable sets. Oper. Res. Lett. 36(6), 673–676 (2008)
Escudero, L.F., Landete, M., Marín, A.: A branch-and-cut algorithm for the winner determination problem. Decis. Support Syst. 46, 649–659 (2009)
Cho, D.C., Padberg, M.W., Rao, M.R.: On the uncapacitated plant location problem II: facets and lifting theorems. Math. Oper. Res. 8(4), 590–612 (1983)
Cánovas, L., Landete, M., Marín, A.: On the facets of the simple plant location packing polytope. Discrete Appl. Math. 124(1), 27–53 (2002)
Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)
Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence system polyhedra. Math. Program. 6, 48–61 (1974)
Padberg, M.W.: A note on zero-one programming. Oper. Res. 23, 833–837 (1975)
Landete, M.: Obtención de facetas de poliedros asociados a problemas de empaquetamiento. PhD Thesis, University of Murcia (2001)
Padberg, M.W.: On the complexity of set packing polyhedra. Ann. Discret. Math. 1, 421–434 (1977)
Wolsey, L.A.: Further facet generating procedures for vertex packing polytopes. Math. Program. 11, 158–163 (1976)
Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra II: stable sets. SIAM J. Discrete Math. 7(3), 359–371 (1994)
Galluccio, A., Gentile, C., Ventura, P.: Gear composition and the stable set polytope. Oper. Res. Lett. 36(4), 419–423 (2008)
Xavier, Á.S., Campêlo, M.: A new facet generating procedure for the stable set polytope. Electron. Notes Discrete Math. 37, 183–188 (2011)
Trotter, L.E.: A class of facet-producing graphs for vertex packing polyhedra. Discret. Math. 12, 373–388 (1975)
Cheng, E., Cunningham, W.H.: Wheel inequalities for stable set polytopes. Math. Program. 77, 389–421 (1997)
Cánovas, L., Landete, M., Marín, A.: New facets for the set packing polytope. Oper. Res. Lett. 27, 153–161 (2000)
Cánovas, L., Landete, M., Marín, A.: Facet obtaining procedures for set packing problems. SIAM J. Discrete Math. 16(1), 127–155 (2002)
Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory 18, 138–154 (1975)
Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra III: graphs with no \(W_4\) minor. SIAM J. Discrete Math. 7(3), 372–389 (1994)
Dahl, G.: Stable set polytopes for a class of circulant graphs. SIAM J. Optim. 9, 493–503 (1999)
Liebling, T.M., Oriolo, G., Spille, B., Stauffer, G.: On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs. Math. Methods Oper. Res. 59, 25–35 (2004)
Galluccio, A., Gentile, C., Ventura, P.: On the stable set polytope of claw-free graphs. In: Yang, B., Du, D.Z., Wang, C.A. (eds.) Combinatorial Optimization and Applications, pp. 339–350. Springer, Berlin (2008)
Pêcher, A., Wagler, A.K.: Almost all webs are not rank-perfect. Math. Program. 105(2), 311–328 (2006)
Pêcher, A., Wagler, A.K.: A construction for non-rank facets of stable set polytopes of webs. Eur. J. Comb. 27(7), 1172–1185 (2006)
Stauffer, G.: On the facets of the stable set polytope of quasi-line graphs. Oper. Res. Lett. 39(3), 208–212 (2011)
Silvester, J.R.: Determinants of block matrices. The Math. Gaz. 84(501), 460–467 (2000)
Acknowledgements
Research supported by Spanish Ministerio de Economía y Competitividad, project MTM2015-65915-R, Ministerio de Educación, Cultura y Deporte, PhD Grant FPU15/05883, Fundación Séneca de la Consejería de Educación de la Comunidad Autónoma de la Región de Murcia, project 19320/PI/14 and Fundación BBVA, project FUNDBBVA/016/005.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marín, A., Pelegrín, M. A new lifting theorem for vertex packing. Optim Lett 13, 1299–1312 (2019). https://doi.org/10.1007/s11590-018-1312-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-018-1312-4