A new lifting theorem for vertex packing | Optimization Letters Skip to main content
Log in

A new lifting theorem for vertex packing

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We present a new theorem to lift facets of the vertex packing problem. We prove the result and analyse its implications, showing that it generalizes a previous lifting theorem that was proved in 1983. The theorem is illustrated with some examples. Finally, we introduce two new families of facet-defining graphs that can be obtained as a consequence of this new lifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balas, E., Padberg, M.W.: Set partitioning: a survey. SIAM Rev. 18(4), 710–760 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. Handb. of Comb. Optim., pp. 1–74. Springer, New York (1999)

    MATH  Google Scholar 

  3. Cornaz, D., Jost, V.: A one-to-one correspondence between colorings and stable sets. Oper. Res. Lett. 36(6), 673–676 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Escudero, L.F., Landete, M., Marín, A.: A branch-and-cut algorithm for the winner determination problem. Decis. Support Syst. 46, 649–659 (2009)

    Article  Google Scholar 

  5. Cho, D.C., Padberg, M.W., Rao, M.R.: On the uncapacitated plant location problem II: facets and lifting theorems. Math. Oper. Res. 8(4), 590–612 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cánovas, L., Landete, M., Marín, A.: On the facets of the simple plant location packing polytope. Discrete Appl. Math. 124(1), 27–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence system polyhedra. Math. Program. 6, 48–61 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Padberg, M.W.: A note on zero-one programming. Oper. Res. 23, 833–837 (1975)

    Article  MATH  Google Scholar 

  10. Landete, M.: Obtención de facetas de poliedros asociados a problemas de empaquetamiento. PhD Thesis, University of Murcia (2001)

  11. Padberg, M.W.: On the complexity of set packing polyhedra. Ann. Discret. Math. 1, 421–434 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wolsey, L.A.: Further facet generating procedures for vertex packing polytopes. Math. Program. 11, 158–163 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra II: stable sets. SIAM J. Discrete Math. 7(3), 359–371 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galluccio, A., Gentile, C., Ventura, P.: Gear composition and the stable set polytope. Oper. Res. Lett. 36(4), 419–423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xavier, Á.S., Campêlo, M.: A new facet generating procedure for the stable set polytope. Electron. Notes Discrete Math. 37, 183–188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Trotter, L.E.: A class of facet-producing graphs for vertex packing polyhedra. Discret. Math. 12, 373–388 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng, E., Cunningham, W.H.: Wheel inequalities for stable set polytopes. Math. Program. 77, 389–421 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Cánovas, L., Landete, M., Marín, A.: New facets for the set packing polytope. Oper. Res. Lett. 27, 153–161 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cánovas, L., Landete, M., Marín, A.: Facet obtaining procedures for set packing problems. SIAM J. Discrete Math. 16(1), 127–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory 18, 138–154 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra III: graphs with no \(W_4\) minor. SIAM J. Discrete Math. 7(3), 372–389 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dahl, G.: Stable set polytopes for a class of circulant graphs. SIAM J. Optim. 9, 493–503 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liebling, T.M., Oriolo, G., Spille, B., Stauffer, G.: On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs. Math. Methods Oper. Res. 59, 25–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Galluccio, A., Gentile, C., Ventura, P.: On the stable set polytope of claw-free graphs. In: Yang, B., Du, D.Z., Wang, C.A. (eds.) Combinatorial Optimization and Applications, pp. 339–350. Springer, Berlin (2008)

    Chapter  Google Scholar 

  25. Pêcher, A., Wagler, A.K.: Almost all webs are not rank-perfect. Math. Program. 105(2), 311–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pêcher, A., Wagler, A.K.: A construction for non-rank facets of stable set polytopes of webs. Eur. J. Comb. 27(7), 1172–1185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stauffer, G.: On the facets of the stable set polytope of quasi-line graphs. Oper. Res. Lett. 39(3), 208–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Silvester, J.R.: Determinants of block matrices. The Math. Gaz. 84(501), 460–467 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by Spanish Ministerio de Economía y Competitividad, project MTM2015-65915-R, Ministerio de Educación, Cultura y Deporte, PhD Grant FPU15/05883, Fundación Séneca de la Consejería de Educación de la Comunidad Autónoma de la Región de Murcia, project 19320/PI/14 and Fundación BBVA, project FUNDBBVA/016/005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Pelegrín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín, A., Pelegrín, M. A new lifting theorem for vertex packing. Optim Lett 13, 1299–1312 (2019). https://doi.org/10.1007/s11590-018-1312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1312-4

Keywords

Navigation