A DC optimization-based clustering technique for edge detection | Optimization Letters Skip to main content
Log in

A DC optimization-based clustering technique for edge detection

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We introduce a method for edge detection which is based on clustering the pixels representing any given digital image into two sets (the edge pixels and the non-edge ones). The process is based on associating to each pixel an appropriate vector representing the differences in brightness w.r.t. the surrounding pixels. Clustering is driven by the norms of such vectors, thus it takes place in \(\mathbb {R}\), which allows us to use a (simple) DC (Difference of Convex) optimization algorithm to get the clusters. A novel thinning technique, based on calculation of the edge phase angles, refines the classification obtained by the clustering algorithm. The results of some numerical experiments are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Astorino, A., Gaudioso, M.: Ellipsoidal separation for classification problems. Optim. Methods Softw. 20(2–3), 261–270 (2005)

  2. Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP. J. Optim. Theory Appl. 112(2), 265–293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astorino, A., Gaudioso, M.: A fixed-center spherical separation algorithm with kernel transformations for classification problems. Comput. Manag. Sci. 6(3), 357–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Astorino, A., Fuduli, A., Gaudioso, M.: DC models for spherical separation. J. Global Optim. 48(4), 657–669 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Astorino, A., Fuduli, A., Gaudioso, M.: Margin maximization in spherical separation. Comput. Optim. Appl. 53(2), 301–322 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Astorino, A., Gaudioso, M., Khalaf, W.: Edge detection by spherical separation. Comput. Manag. Sci. 11, 517–530 (2014)

    Article  MATH  Google Scholar 

  7. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pat. Anal. Mach. Intell. 27(9), 1485–1490 (2005)

    Article  Google Scholar 

  8. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 8, 679–697 (1986)

    Article  Google Scholar 

  9. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)

  10. Dorigo, M., Maniezzo V., and Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybernet. Part B, 26, 29–41 (1996)

  11. Dinh Pham, T., Le Thi, H.A.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Control Optim. 8, 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganguly, D., Mukherjee S., Mitra, K., Mukherjee P.: A novel approach for edge detection of images. In: International Conference on Computer and Automation Engineering, IEEE Computer Society, 2009. doi:10.1109/ICCAE.2009.39

  13. Gómez-Moreno, H., Maldonado-Bascón, S., López-Ferreras, F.: Edge detection in noisy images by using the support vector machines. IWANN, Lecture Notes on Computer Science, Springer-Verlag, Heidelberg 2084, 685–692 (2001)

  14. Hardie, R.C., Boncelet, C.G.: Gradient-based edge detection using nonlinear edge enhancing prefilters. IEEE Trans. Imag. Process, 1572–1577 (1995)

  15. Kim, D., Lee, W., Kweon, I.: Automatic edge detection using 3x3 ideal binary pixel patterns and fuzzy-based edge thresholding. Pat. Recogn. Lett. 25(1), 101–106 (2004)

    Article  Google Scholar 

  16. Konishi, S., Yuille, A.L., Coughlan, J.M., Zhu, S.C.: Statistical edge detection: learning and evaluating edge cues. IEEE Trans. Pat. Anal. Mach. Intel. 25(1), 57–74 (2003)

    Article  Google Scholar 

  17. Le Thi, H.A., Le Hoai, M., Pham Dinh, T.: New and efficient DCA based algorithms for minimum sum-of-squares clustering. Pat. Recogn. 47, 388–401 (2014)

    Article  MATH  Google Scholar 

  18. Lu, D.S., Chen, C.-C.: Edge detection improvement by ant colony optimization. Pat. Recogn. Let. 29, 416–425 (2008)

  19. MathWorks, Image edge detection using ant colony optimization, File exchange program. http://www.mathworks.com/matlabcentral/fileexchange/20997-image-edge-detection-using-ant-colony-optimization

  20. Nadernejad, E.: Edge detection techniques: evaluations and comparisons. Appl. Math. Sci. 2(31), 1507–1520 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Nezamabadi-Pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algorithms. Soft Compu. 10, 623–628 (2006)

    Article  Google Scholar 

  22. Neupane, B., Aung, Z., Woon, W.L.: A new image detection method using quality-based clustering, Tech. Rep. DNA#2012-01, Masdar Institute of Science and Technology, Abu Dhabi (2012)

  23. Pratt W.K.: Digital image processing. Wiley (2001)

  24. Rakesh, R.R., Chaudhuri, P., Murthy, C.A.: Thresholding in edge detection: a statistical approach. IEEE Trans. Image Process. 13(7), 927–936 (2004)

    Article  Google Scholar 

  25. Sobel, I., Feldman, G.: A 3\(\times \)3 Isotropic Gradient Operator for Image Processing, Stanford Artificial Intelligence Project (SAIL) (1968)

  26. Tao, H., Huang, T.S.: Color image edge detection using cluster analysis. IEEE Int. Conf. Image Process, 834–836 (1997)

  27. Tian, J., Yu, W., Xie, S.: An ant colony optimization algorithm for image edge detection, in IEEE Congress on Evolutionary Computation (CEC 2008), pp 751–756 (2008)

  28. Vapnik, V.: The nature of statistical learning theory. Springer (1995)

  29. Zheng, S., Liu, J., Tian, J.W.: A new efficient SVM-based edge detection method. Pat. Recogn. Lett. 25(10), 1143–1154 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gaudioso.

Additional information

The work has been partially supported by Project PON 01_01180 “Neurostar”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, W., Astorino, A., D’Alessandro, P. et al. A DC optimization-based clustering technique for edge detection. Optim Lett 11, 627–640 (2017). https://doi.org/10.1007/s11590-016-1031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1031-7

Keywords

Navigation