N-fold integer programming and nonlinear multi-transshipment | Optimization Letters Skip to main content
Log in

N-fold integer programming and nonlinear multi-transshipment

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The multi-transshipment problem is NP-hard already for two commodities over bipartite networks. Nonetheless, using our recent theory of n-fold integer programming and extensions developed herein, we are able to establish the polynomial time solvability of the problem in two broad situations. First, for any fixed number of commodities and number of suppliers, we solve the problem over bipartite networks with variable number of consumers in polynomial time. This is very natural in operations research applications where few facilities serve many customers. Second, for every fixed network, we solve the problem with variable number of commodities in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki S., Takemura A.: Minimal basis for connected Markov chain over 3 × 3 × K contingency tables with fixed two-dimensional marginals. Aust. N. Z. J. Stat. 45, 229–249 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berstein Y., Onn S.: The Graver complexity of integer programming. Ann. Comb. 13, 289–296 (2009)

    Article  MathSciNet  Google Scholar 

  3. De Loera J., Hemmecke R., Onn S., Weismantel R.: N-fold integer programming. Disc. Optim. 5, 231–241 (2008) (volume in memory of George B. Dantzig)

    Article  MATH  MathSciNet  Google Scholar 

  4. De Loera J., Hemmecke R., Onn S., Rothblum U.G., Weismantel R.: Convex integer maximization via Graver bases. J. Pure Appl. Algebra 213, 1569–1577 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. De Loera J., Onn S.: The complexity of three-way statisticaltables. SIAM J. Comp. 33, 819–836 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. De Loera J., Onn S.: All linear and integer programs are slim 3-way transportation programs. SIAM J. Optim. 17, 806–821 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Loera J., Onn S.: Markov bases of three-way tables are arbitrarily complicated. J. Symb. Comp. 41, 173–181 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Graver J.E.: On the foundation of linear and integer programming I. Math. Prog. 9, 207–226 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm for convex integer minimization. Math. Prog. (To appear)

  10. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: Linear Inequalities and Related Systems. Ann. Math. Stud., vol. 38, pp. 223–246. Princeton University Press, Princeton (1956)

  11. Hoşten S., Sullivant S.: Finiteness theorems for Markov bases of hierarchical models. J. Comb. Theory Ser. A 114, 311–321 (2007)

    Article  MATH  Google Scholar 

  12. Leighton T., Rao S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. Assoc. Comp. Mach. 46, 787–832 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Lenstra H.W. Jr: Integer programming with a fixed number ofvariables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Santos F., Sturmfels B.: Higher Lawrence configurations. J. Comb. Theory Ser. A 103, 151–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schrijver A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Onn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmecke, R., Onn, S. & Weismantel, R. N-fold integer programming and nonlinear multi-transshipment. Optim Lett 5, 13–25 (2011). https://doi.org/10.1007/s11590-010-0231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0231-9

Keywords

Navigation