Abstract
We introduce the Symmetric Reduction Ansatz at a point from the closure of the feasible set in generalized semi-infinite programming. A corresponding Symmetric Reduction Lemma is shown for the local description of the latter set, and optimality conditions as well as topological properties are derived. We conjecture that the Symmetric Reduction Ansatz holds at all local minimizers of generic generalized semi-infinite programs.
Similar content being viewed by others
References
Fiacco A.V. and McCormick G.P. (1968). Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York
Günzel, H., Jongen, H.Th., Stein, O.: On the closure of the feasible set in generalized semi-infinite programming. Cent. Eur. J. Oper. Res. (2007, in press)
Guerra Vázquez, F., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. (2007, in press)
Hettich, R., Jongen, H.Th.: Semi-infinite programming: conditions of optimality and applications. In: Stoer, J. (ed.) Optimization Techniques, Part 2, Lecture Notes in Control and Information Sciences, vol. 7, pp. 1–11. Springer, Berlin (1978)
Hettich R. and Still G. (1995). Second order optimality conditions for generalized semi-infinite programming problems. Optimization 34: 195–211
Jongen H.Th., Jonker P. and Twilt F. (2000). Nonlinear Optimization in Finite Dimensions. Kluwer, Dordrecht
Jongen H.Th., Meer K. and Triesch E. (2004). Optimization Theory. Kluwer, Boston
Stein, O.: On parametric semi-infinite optimization. Thesis, Shaker, Aachen (1997)
Stein O. (2000). On level sets of marginal functions. Optimization 48: 43–67
Stein O. (2001). First order optimality conditions for degenerate index sets in generalized semi-infinite programming. Math. Oper. Res. 26: 565–582
Stein O. (2003). Bi-level Strategies in Semi-infinite Programming. Kluwer, Boston
Stein O. (2006). A semi-infinite approach to design centering. In: Dempe, S. and Kalashnikow, S. (eds) Optimization with Multivalued Mappings, pp 209–228. Springer, Heidelberg
Stein O. and Still G. (2002). On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142: 444–462
Wetterling W. (1970). Definitheitsbedingungen für relative Extrema bei Optimierungs- und Approximationsaufgaben. Numerische Mathematik 15: 122–136
Zwier, G.: Structural analysis in semi-infinite programming. Thesis, University of Twente (1987)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Günzel, H., Jongen, H.T. & Stein, O. Generalized semi-infinite programming: the Symmetric Reduction Ansatz. Optimization Letters 2, 415–424 (2008). https://doi.org/10.1007/s11590-007-0069-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-007-0069-y