Heuristic for a new multiobjective scheduling problem | Optimization Letters
Skip to main content

Heuristic for a new multiobjective scheduling problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider a telecommunication problem in which the objective is to schedule data transmission to be as fast and as cheap as possible. The main characteristic and restriction in solving this multiobjective optimization problem is the very limited computational capacity available. We describe a simple but efficient local search heuristic to solve this problem and provide some encouraging numerical test results. They demonstrate that we can develop a computationally inexpensive heuristic without sacrificing too much in the solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Błażewicz J. (1987) Selected topics in scheduling theory. In: Martello S., Laporte G., Minoux M., Ribeiro C. (eds) Surveys in Combinatorial Optimization, vol 31 of Annals of Discrete Mathematics. Elsevier, Amsterdam, p. 1–59

    Google Scholar 

  2. Cormen T.H., Leiserson C.E., Rivest R.L. (1990) Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company, New York

    Google Scholar 

  3. Ehrgott M., Tenfelde-Podehl D. (2003) Computation of ideal and Nadir values and implications for their use in MCDM methods. Eur. J. Operat. Res. 151(1): 119–139

    Article  MATH  MathSciNet  Google Scholar 

  4. Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Hammer P.L., Johnson E.L., Korte B.H. (eds) Discrete optimization II, vol 5 of Annals of Discrete Mathematics. North-Holland Publishing Company, Amsterdam, pp. 287–326

    Google Scholar 

  5. Gustafsson E., Jonsson A. (2003) Always best connected. IEEE Wirel. Commun. 10(1): 49–55

    Article  Google Scholar 

  6. Hall L.A. (1997) Approximation algorithms for scheduling. In: Hochbaum D.S. (ed) Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston

    Google Scholar 

  7. ILOG CPLEX 8.0 User’s Manual. ILOG, (2002)

  8. Intel XScale Microarchitecture, Technical Summary. Intel Corporation, (2000)

  9. Jansen K., Porkolab L. (2001) Improved approximation schemes for scheduling unrelated parallel machines. Math. Oper. Res. 26(2): 324–338

    Article  MATH  MathSciNet  Google Scholar 

  10. Korte B., Vygen J. (2002) Combinatorial Optimization: Theory and Algorithms. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  11. Miettinen K. (1999) Nonlinear Multiobjective Optimization. Kluwer, Dordrecht

    MATH  Google Scholar 

  12. Miettinen K., Mäkelä, M.M., Kaario K.: Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur. J. Oper. Res. (2006) (to appear)

  13. Nagar A., Haddock J., Heragu S. (1995) Multiple and bicriteria scheduling: a literature survey. Eur. J. Oper. Res. 81(1): 88–104

    Article  MATH  Google Scholar 

  14. Setämaa-Kärkkäinen A., Miettinen K., Vuori J. (2006) Best compromise solution for a new multiobjective scheduling problem. Comput. Oper. Res. 33(8): 2353–2368

    Article  MATH  Google Scholar 

  15. T’Kindt V., Billaut J.-C. (2002) Multicriteria scheduling problems. In: Ehrgott M., Gandibleux X. (eds) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Kluwer, Dordrecht, pp. 445–491

    Google Scholar 

  16. T’kindt V., Billaut J.-C. (2002) Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  17. Trick M.A. (1994) Scheduling multiple variable-speed machines. Oper. Res. 42(2): 234–248

    Article  MATH  Google Scholar 

  18. Varshney U., Jain R. (2001) Issues in emerging 4G wireless networks. IEEE Comput. 34(6): 94–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Setämaa-Kärkkäinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setämaa-Kärkkäinen, A., Miettinen, K. & Vuori, J. Heuristic for a new multiobjective scheduling problem. Optimization Letters 1, 213–225 (2007). https://doi.org/10.1007/s11590-006-0020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-006-0020-7

Keywords