Abstract
We consider a telecommunication problem in which the objective is to schedule data transmission to be as fast and as cheap as possible. The main characteristic and restriction in solving this multiobjective optimization problem is the very limited computational capacity available. We describe a simple but efficient local search heuristic to solve this problem and provide some encouraging numerical test results. They demonstrate that we can develop a computationally inexpensive heuristic without sacrificing too much in the solution quality.
Similar content being viewed by others
References
Błażewicz J. (1987) Selected topics in scheduling theory. In: Martello S., Laporte G., Minoux M., Ribeiro C. (eds) Surveys in Combinatorial Optimization, vol 31 of Annals of Discrete Mathematics. Elsevier, Amsterdam, p. 1–59
Cormen T.H., Leiserson C.E., Rivest R.L. (1990) Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company, New York
Ehrgott M., Tenfelde-Podehl D. (2003) Computation of ideal and Nadir values and implications for their use in MCDM methods. Eur. J. Operat. Res. 151(1): 119–139
Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Hammer P.L., Johnson E.L., Korte B.H. (eds) Discrete optimization II, vol 5 of Annals of Discrete Mathematics. North-Holland Publishing Company, Amsterdam, pp. 287–326
Gustafsson E., Jonsson A. (2003) Always best connected. IEEE Wirel. Commun. 10(1): 49–55
Hall L.A. (1997) Approximation algorithms for scheduling. In: Hochbaum D.S. (ed) Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston
ILOG CPLEX 8.0 User’s Manual. ILOG, (2002)
Intel XScale Microarchitecture, Technical Summary. Intel Corporation, (2000)
Jansen K., Porkolab L. (2001) Improved approximation schemes for scheduling unrelated parallel machines. Math. Oper. Res. 26(2): 324–338
Korte B., Vygen J. (2002) Combinatorial Optimization: Theory and Algorithms. Springer, Berlin Heidelberg New York
Miettinen K. (1999) Nonlinear Multiobjective Optimization. Kluwer, Dordrecht
Miettinen K., Mäkelä, M.M., Kaario K.: Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur. J. Oper. Res. (2006) (to appear)
Nagar A., Haddock J., Heragu S. (1995) Multiple and bicriteria scheduling: a literature survey. Eur. J. Oper. Res. 81(1): 88–104
Setämaa-Kärkkäinen A., Miettinen K., Vuori J. (2006) Best compromise solution for a new multiobjective scheduling problem. Comput. Oper. Res. 33(8): 2353–2368
T’Kindt V., Billaut J.-C. (2002) Multicriteria scheduling problems. In: Ehrgott M., Gandibleux X. (eds) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Kluwer, Dordrecht, pp. 445–491
T’kindt V., Billaut J.-C. (2002) Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin Heidelberg New York
Trick M.A. (1994) Scheduling multiple variable-speed machines. Oper. Res. 42(2): 234–248
Varshney U., Jain R. (2001) Issues in emerging 4G wireless networks. IEEE Comput. 34(6): 94–96
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Setämaa-Kärkkäinen, A., Miettinen, K. & Vuori, J. Heuristic for a new multiobjective scheduling problem. Optimization Letters 1, 213–225 (2007). https://doi.org/10.1007/s11590-006-0020-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-006-0020-7