Objective measurements of image quality in synchrotron radiation phase-contrast imaging versus digital mammography | International Journal of Computer Assisted Radiology and Surgery Skip to main content
Log in

Objective measurements of image quality in synchrotron radiation phase-contrast imaging versus digital mammography

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Phase-contrast mammography with synchrotron radiation is an innovative X-ray imaging practice that improves the identification of breast lesions. Previous studies have proven the superiority of the mammography images taken in the phase-contrast modality using synchrotron radiation beams as compared with images taken in conventional mammography by subjective analyses. However, to our knowledge, no previous study has compared different acquisition systems in order to quantify this improvement by means of objective robust indicators. In this research, we intend to quantify the superiority of phase-contrast imaging by means of objective metrics of image quality.

Methods

Images from the American College of Radiology Mammographic Accreditation Phantom were obtained at hospitals, in two digital mammography equipment and at the Elettra synchrotron radiation facility (Trieste, Italy), using free space propagation phase-contrast modality. Regions of interest were selected to analyze image quality at the fibers (phase object) and masses (area object) simulated on the phantom by means of the signal-to-noise ratio, the figure of merit, the contrast and the edge visibility.

Results

The image contrast and edge visibility were significantly higher at the phase-contrast modality as compared with digital mammography equipment. The figure of merit using phase-contrast modality was higher for the fibers and comparable for the masses.

Conclusion

The results showed an improvement of the contrast and edge visibility in phase-contrast images. These improvements may be important in the detection of small lesions and details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pisano ED, Yaffe Mj (2014) Breast cancer screening: Should tomosynthesis replace digital mammography? JAMA 311(24):2488–2489

    Article  CAS  PubMed  Google Scholar 

  2. Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D’Orsi C, Jong R, Rebner M (2005) Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353(17):1773–1783

    Article  CAS  PubMed  Google Scholar 

  3. Dance DR (1988) Diagnostic radiology with X-rays. Adam Hilger, United Kingdom

    Google Scholar 

  4. Friedewald SM, Rafferty EA, Rose SL (2014) Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 311(24):2499–2507

    Article  CAS  PubMed  Google Scholar 

  5. Lindfors KK, Boone JM, Nelson TR, Yang K, Kwan ALC, Miller DF (2008) Dedicated breast CT: initial clinical experience. Radiology 246(3):725–733

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1–R35

    Article  PubMed  Google Scholar 

  7. Lewis RA (2004) Medical phase contrast X-ray imaging: current status and future prospects. Phys Med Biol 49(16):3573–3583

    Article  CAS  PubMed  Google Scholar 

  8. Rigon L (2014) 2.08—X-ray imaging with coherent sources. In: Brahme Anders (ed) Comprehensive biomedical physics. Elsevier, Oxford, pp 193–220

    Chapter  Google Scholar 

  9. Honda C, Ohara H (2008) Advantages of magnification in digital phase-contrast mammography using a practical X-ray tube. Eur J Radiol 68(3):69–72

    Article  Google Scholar 

  10. Olivo A, Gkoumas S, Endrizzi M, Hagen CK, Szafraniec MB, Diemoz PC, Munro PRT, Ignatyev K, Johnson B, Horrocks JA, Vinnicombe SJ, Jones JL, Speller RD (2013) Low-dose phase contrast mammography with conventional X-ray sources. Med Phys 40(9):090701

    Article  CAS  PubMed  Google Scholar 

  11. Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, Sanabor D, Zanconati F, Dreossi D, Abrami A, Quai E, Bregant P, Casarin K, Chenda V, Menk RH, Rokvic T, Vascotto A, Tromba G, Cova MA (2011) Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259(3):684–694

    Article  PubMed  Google Scholar 

  12. Arfelli F, Bonvicini V, Bravin A, Cantatore G, Castelli E, Dalla Palma L, Di Michiel M, Fabrizioli M, Longo R, Menk RH, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Ratti M, Rigon L, Tromba G, Vacchi A, Vallazza E, Zanconati F (2000) Mammography with synchrotron radiation: phase-detection techniques1. Radiology 215(1):286–293

    Article  CAS  PubMed  Google Scholar 

  13. Lider VV, Kovalchuk MV (2013) X-ray phase-contrast methods. Crystallogr Rep 58(6):769–787

    Article  CAS  Google Scholar 

  14. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66(12):5486

    Article  CAS  Google Scholar 

  15. Arfelli F, Assante M, Bonvicini V, Bravin A, Cantatore G, Castelli E, Palma LD, Michiel MD, Longo R, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Tromba G, Vacchi A, Vallazza E, Zanconati F (1998) Low-dose phase contrast X-ray medical imaging. Phys Med Biol 43(10):2845

    Article  CAS  PubMed  Google Scholar 

  16. Burattini E, Gambaccini M, Marziani M, Rimondi O, Indovina PL, Pocek M, Simonetti G, Benassi M, Tirelli C, Passariello R (1992) X-ray mammography with synchrotron radiation. Rev Sci Instrum 63(1):638–640

    Article  Google Scholar 

  17. Moeckli R, Verdun F, Fiedler S, Pachoud M, Schnyder P, Valley J (2000) Objective comparison of image quality and dose between conventional and synchrotron radiation mammography. Phys Med Biol 45(12):3509–3523

    Article  CAS  PubMed  Google Scholar 

  18. Ghani MU, Wu D, Li Y, Kang M, Chen WR, Wu X, Liu H (2013) Quantitative analysis of contrast to noise ratio using a phase contrast X-ray imaging prototype. Presented at the Biophotonics and Immune Responses VIII 8582, pp 85820H–85820H-6

  19. Borg M, Badr I, Royle GJ (2012) The use of a figure-of-merit (FOM) for optimization in digital mammography: a literature review. Radiat Prot Dosim 151(1):81–88

    Article  CAS  Google Scholar 

  20. Diemoz PC, Bravin A, Langer M, Coan P (2012) Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques. Opt Express 20(25):27670

    Article  CAS  PubMed  Google Scholar 

  21. Pagot E, Fiedler S, Cloetens P, Bravin A, Coan P, Fezzaa K, Baruchel J, Härtwig J (2005) Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging. Phys Med Biol 50(4):709

    Article  PubMed  Google Scholar 

  22. Dreossi D, Abrami A, Arfelli F, Bregant P, Casarin K, Chenda V, Cova MA, Longo R, Menk R-H, Quai E, Quaia E, Rigon L, Rokvic T, Sanabor D, Tonutti M, Tromba G, Vascotto A, Zanconati F, Castelli E (2008) The mammography project at the SYRMEP beamline. Eur J Radiol 68(3):S58–S62

    Article  CAS  PubMed  Google Scholar 

  23. Castelli E, Arfelli F, Dreossi D, Longo R, Rokvic T, Cova MA, Quaia E, Tonutti M, Zanconati F, Abrami A, Chenda V, Menk RH, Quai E, Tromba G, Bregant P, de Guarrini F (2007) Clinical mammography at the SYRMEP beam line. Nucl Instrum Methods Phys Res Sect A 572(1):237–240

    Article  CAS  Google Scholar 

  24. Ingal VN, Beliaevskaya EA (1995) X-ray plane-wave topography observation of the phase contrast from a non-crystalline object. J Phys D Appl Phys 28(11):2314

    Article  CAS  Google Scholar 

  25. Gureyev TE, Wilkins SW (1997) Regimes of X-ray phase-contrast imaging with perfect crystals. Nouv Cim D 19(2–4):545–552

    Article  Google Scholar 

  26. Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

The author would like to thanks to ICTP for supporting this research, and Synchrotron ELETTRA and Trieste hospitals for contributing with data collection.

Conflict of interest

All the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ruiz-Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Gonzalez, Y., Perez-Diaz, M., Martínez-Aguila, D. et al. Objective measurements of image quality in synchrotron radiation phase-contrast imaging versus digital mammography. Int J CARS 11, 181–188 (2016). https://doi.org/10.1007/s11548-015-1237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1237-7

Keywords

Navigation