Abstract
Purpose
Phase-contrast mammography with synchrotron radiation is an innovative X-ray imaging practice that improves the identification of breast lesions. Previous studies have proven the superiority of the mammography images taken in the phase-contrast modality using synchrotron radiation beams as compared with images taken in conventional mammography by subjective analyses. However, to our knowledge, no previous study has compared different acquisition systems in order to quantify this improvement by means of objective robust indicators. In this research, we intend to quantify the superiority of phase-contrast imaging by means of objective metrics of image quality.
Methods
Images from the American College of Radiology Mammographic Accreditation Phantom were obtained at hospitals, in two digital mammography equipment and at the Elettra synchrotron radiation facility (Trieste, Italy), using free space propagation phase-contrast modality. Regions of interest were selected to analyze image quality at the fibers (phase object) and masses (area object) simulated on the phantom by means of the signal-to-noise ratio, the figure of merit, the contrast and the edge visibility.
Results
The image contrast and edge visibility were significantly higher at the phase-contrast modality as compared with digital mammography equipment. The figure of merit using phase-contrast modality was higher for the fibers and comparable for the masses.
Conclusion
The results showed an improvement of the contrast and edge visibility in phase-contrast images. These improvements may be important in the detection of small lesions and details.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Pisano ED, Yaffe Mj (2014) Breast cancer screening: Should tomosynthesis replace digital mammography? JAMA 311(24):2488–2489
Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D’Orsi C, Jong R, Rebner M (2005) Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353(17):1773–1783
Dance DR (1988) Diagnostic radiology with X-rays. Adam Hilger, United Kingdom
Friedewald SM, Rafferty EA, Rose SL (2014) Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 311(24):2499–2507
Lindfors KK, Boone JM, Nelson TR, Yang K, Kwan ALC, Miller DF (2008) Dedicated breast CT: initial clinical experience. Radiology 246(3):725–733
Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1–R35
Lewis RA (2004) Medical phase contrast X-ray imaging: current status and future prospects. Phys Med Biol 49(16):3573–3583
Rigon L (2014) 2.08—X-ray imaging with coherent sources. In: Brahme Anders (ed) Comprehensive biomedical physics. Elsevier, Oxford, pp 193–220
Honda C, Ohara H (2008) Advantages of magnification in digital phase-contrast mammography using a practical X-ray tube. Eur J Radiol 68(3):69–72
Olivo A, Gkoumas S, Endrizzi M, Hagen CK, Szafraniec MB, Diemoz PC, Munro PRT, Ignatyev K, Johnson B, Horrocks JA, Vinnicombe SJ, Jones JL, Speller RD (2013) Low-dose phase contrast mammography with conventional X-ray sources. Med Phys 40(9):090701
Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, Sanabor D, Zanconati F, Dreossi D, Abrami A, Quai E, Bregant P, Casarin K, Chenda V, Menk RH, Rokvic T, Vascotto A, Tromba G, Cova MA (2011) Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259(3):684–694
Arfelli F, Bonvicini V, Bravin A, Cantatore G, Castelli E, Dalla Palma L, Di Michiel M, Fabrizioli M, Longo R, Menk RH, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Ratti M, Rigon L, Tromba G, Vacchi A, Vallazza E, Zanconati F (2000) Mammography with synchrotron radiation: phase-detection techniques1. Radiology 215(1):286–293
Lider VV, Kovalchuk MV (2013) X-ray phase-contrast methods. Crystallogr Rep 58(6):769–787
Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66(12):5486
Arfelli F, Assante M, Bonvicini V, Bravin A, Cantatore G, Castelli E, Palma LD, Michiel MD, Longo R, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Tromba G, Vacchi A, Vallazza E, Zanconati F (1998) Low-dose phase contrast X-ray medical imaging. Phys Med Biol 43(10):2845
Burattini E, Gambaccini M, Marziani M, Rimondi O, Indovina PL, Pocek M, Simonetti G, Benassi M, Tirelli C, Passariello R (1992) X-ray mammography with synchrotron radiation. Rev Sci Instrum 63(1):638–640
Moeckli R, Verdun F, Fiedler S, Pachoud M, Schnyder P, Valley J (2000) Objective comparison of image quality and dose between conventional and synchrotron radiation mammography. Phys Med Biol 45(12):3509–3523
Ghani MU, Wu D, Li Y, Kang M, Chen WR, Wu X, Liu H (2013) Quantitative analysis of contrast to noise ratio using a phase contrast X-ray imaging prototype. Presented at the Biophotonics and Immune Responses VIII 8582, pp 85820H–85820H-6
Borg M, Badr I, Royle GJ (2012) The use of a figure-of-merit (FOM) for optimization in digital mammography: a literature review. Radiat Prot Dosim 151(1):81–88
Diemoz PC, Bravin A, Langer M, Coan P (2012) Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques. Opt Express 20(25):27670
Pagot E, Fiedler S, Cloetens P, Bravin A, Coan P, Fezzaa K, Baruchel J, Härtwig J (2005) Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging. Phys Med Biol 50(4):709
Dreossi D, Abrami A, Arfelli F, Bregant P, Casarin K, Chenda V, Cova MA, Longo R, Menk R-H, Quai E, Quaia E, Rigon L, Rokvic T, Sanabor D, Tonutti M, Tromba G, Vascotto A, Zanconati F, Castelli E (2008) The mammography project at the SYRMEP beamline. Eur J Radiol 68(3):S58–S62
Castelli E, Arfelli F, Dreossi D, Longo R, Rokvic T, Cova MA, Quaia E, Tonutti M, Zanconati F, Abrami A, Chenda V, Menk RH, Quai E, Tromba G, Bregant P, de Guarrini F (2007) Clinical mammography at the SYRMEP beam line. Nucl Instrum Methods Phys Res Sect A 572(1):237–240
Ingal VN, Beliaevskaya EA (1995) X-ray plane-wave topography observation of the phase contrast from a non-crystalline object. J Phys D Appl Phys 28(11):2314
Gureyev TE, Wilkins SW (1997) Regimes of X-ray phase-contrast imaging with perfect crystals. Nouv Cim D 19(2–4):545–552
Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge
Acknowledgments
The author would like to thanks to ICTP for supporting this research, and Synchrotron ELETTRA and Trieste hospitals for contributing with data collection.
Conflict of interest
All the authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ruiz-Gonzalez, Y., Perez-Diaz, M., Martínez-Aguila, D. et al. Objective measurements of image quality in synchrotron radiation phase-contrast imaging versus digital mammography. Int J CARS 11, 181–188 (2016). https://doi.org/10.1007/s11548-015-1237-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-015-1237-7