Abstract
Purpose
Introducing computational methods to laser surgery are an emerging field. Focusing on endoscopic laser interventions, a novel approach is presented to enhance intraoperative incision planning and laser focusing by means of tissue surface information obtained by stereoscopic vision.
Methods
Tissue surface is estimated with stereo-based methods using nonparametric image transforms. Subsequently, laser-to-camera registration is obtained by ablating a pattern on tissue substitutes and performing a principle component analysis for precise laser axis estimation. Furthermore, a virtual laser view is computed utilizing trifocal transfer. Depth-based laser focus adaptation is integrated into a custom experimental laser setup in order to achieve optimal ablation morphology. Experimental validation is conducted on tissue substitutes and ex vivo animal tissue.
Results
Laser-to-camera registration gives an error between planning and ablation of less than 0.2 mm. As a result, the laser workspace can accurately be highlighted within the live views and incision planning can directly be performed. Experiments related to laser focus adaptation demonstrate that ablation geometry can be kept almost uniform within a depth range of 7.9 mm, whereas cutting quality significantly decreases when the laser is defocused.
Conclusions
An automatic laser focus adjustment on tissue surfaces based on stereoscopic scene information is feasible and has the potential to become an effective methodology for optimal ablation. Laser-to-camera registration facilitates advanced surgical planning for prospective user interfaces and augmented reality extensions.
Similar content being viewed by others
References
Andreff N, Tamadazte B, Dembélé S, Hussnain ZE (2013) Preliminary variation on multiview geometry for vision-guided laser surgery. In: Workshop on multi-view geometry in, robotics, MVIGRO’2013, pp 1–10
Böttcher A, Jowett N, Kucher S, Reimer R, Schumacher U, Knecht R, Wöllmer W, Münscher A, Dalchow C (2013) Use of a microsecond er:yag laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed co2 laser. Eur Arch Oto-Rhino-Laryngol, pp 1–8. doi:10.1007/s00405-013-2761-0
Bradski G (2000) The OpenCV Library. Dr. Dobb’s J Softw Tools. http://www.opencv.org
Brunet F, Gay-Bellile V, Bartoli A, Navab N, Malgouyres R (2011) Feature-driven direct non-rigid image registration. Int J Comput Vis 93:33–52
Chang PL, Stoyanov D, Davison A, Edwards P (2013) Real-time dense stereo reconstruction using convex optimisation with a cost-volume for image-guided robotic surgery. In: Proceedings of MICCAI 2013, vol 8149, pp 42–49
Fuchs A, Schultz M, Krüger A, Kundrat D, Diaz Diaz J, Ortmaier T (2012) Online measurement and evaluation of the er: yag laser ablation process using an integrated oct system. In: Proceedings of biomedizinische technik/biomedical, engineering, pp 434–437. doi:10.1515/bmt-2012-4231
Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, second edn. Cambridge University Press, ISBN:0521540518
Herdman RCD, Charlton A, Hinton AE, Freemont AJ (1993) An in vitro comparison of the erbium:yag laser and the carbon dioxide laser in laryngeal surgery. J Laryngol Otol 107:908–911. doi:10.1017/S0022215100124764
Hinni LH, Salassa JR, Grant DG, Pearson BW, Hayden RE, Martin A, Christiansen H, Haughey BH, Nussenbaum B, Steiner W (2007) Transoral laser microsurgery for advanced laryngeal cancer. Arch Otolaryngol Head Neck Surg 133(12):1198–1204. doi:10.1001/archotol.133.12.1198
Jako GJ (1972) Laser surgery of the vocal cordsan experimental study with carbon dioxide lasers on dogs. Laryngoscope 82(12):2204–2216. doi:10.1288/00005537-197212000-00009
Kahrs LA, Burgner J, Klenzner T, Raczkowsky J, Schipper J, Wörn H (2010) Planning and simulation of microsurgical laser bone ablation. Int J Comput Assist Radiol Surg 5(2):155–162. doi:10.1007/s11548-009-0303-4
Kalentev O, Rai A, Kemnitz S, Schneider R (2011) Connected component labeling on a 2d grid using cuda. J Parallel Distrib Comput 71(4):615–620. doi:10.1016/j.jpdc.2010.10.012
Kundrat D, Schoob A, Munske B, Ortmaier T (2013) Towards an endoscopic device for laser-assisted phonomicrosurgery. In: Proceedings of the Hamlyn symposium on medical, robotics, pp 55–56
Lau W, Ramey N, Corso J, Thakor N, Hager G (2004) Stereo-based endoscopic tracking of cardiac surface deformation. In: Proceedings of MICCAI, vol 3217, pp 494–501
Li ZZ, Reinisch L, Van de Merwe WP (1992) Bone ablation with er:yag and co2 laser: study of thermal and acoustic effects. Lasers Surg Med 12(1):79–85. doi:10.1002/lsm.1900120112
Lüerssen K, Lubatschowski H, Ptok M (2007) Erbium:yag-laserchirurgie an stimmlippengewebe. HNO 55(6):443–446. doi:10.1007/s00106-006-1479-3
Mattos LS, Deshpande N, Barresi G, Guastini L, Peretti G (2013) A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery. Laryngoscope pp n/a–n/a. doi:10.1002/lary.24566
McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32(1):12–16
Pantilie C, Nedevschi S (2012) Optimizing the census transform on cuda enabled gpus. In: IEEE international conference on intelligent computer communication and processing (ICCP), pp 201–207. doi:10.1109/ICCP.2012.6356186
Patel S, Rajadhyaksha M, Kirov S, Li Y, Toledo-Crow R (2012) Endoscopic laser scalpel for head and neck cancer surgery. doi:10.1117/12.909172
Peretti G, Piazza C, Bon F, Mora R, Grazioli P, Barbieri D, Mangili S, Nicolai P (2013) Function preservation using transoral laser surgery for t2–t3 glottic cancer: oncologic, vocal, and swallowing outcomes. Eur Arch of Oto-Rhino-Laryngol 270(8):2275–2281. doi:10.1007/s00405-013-2461-9
Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) Ros: an open-source robot operating system. In: Proc. of the IEEE intl. conf. on robotics and automation (ICRA) workshop on open source robotics. Kobe, Japan
Remacle M, Ricci-Maccarini A, Matar N, Lawson G, Pieri F, Bachy V, Nollevaux MC (2012) Reliability and efficacy of a new co2 laser hollow fiber: a prospective study of 39 patients. Eur Arch Oto-Rhino-Laryngol 269(3):917–921. doi:10.1007/s00405-011-1822-5
Richa R, Poignet P, Liu C (2010) Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model. Int J Robot Res 29(2–3):218–230. doi:10.1177/0278364909356600
Röhl S, Bodenstedt S, Suwelack S, Kenngott H, Muller-Stich BP, Dillmann R, Speidel S (2012) Dense gpu-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Med Phys 39:1632. doi:10.1118/1.3681017
Rubinstein M, Armstrong W (2011) Transoral laser microsurgery for laryngeal cancer: a primer and review of laser dosimetry. Lasers Med Sci 26(1):113–124. doi:10.1007/s10103-010-0834-5
Schoob A, Podszus F, Kundrat D, Kahrs L, Ortmaier T (2013) Stereoscopic surface reconstruction in minimally invasive surgery using efficient non-parametric image transforms. In: Proceedings of th 3rd joint workshop on new technologies for computer/robot assisted surgery (CRAS), pp 26–29
Seki T, Oka K, Naganawa A, Yamashita H, Kim K, Chiba T (2010) Laser distance measurement using a newly developed composite-type optical fiberscope for fetoscopic laser surgery. Opt Lasers Eng 48(10):974–977. doi:10.1016/j.optlaseng.2010.05.010
Steiner W, Ambrosch P (2000) Endoscopic laser surgery of the upper aerodigestive tract: with special emphasis on cancer surgery. Thieme, Stuttgart
Stoyanov D, Scarzanella M, Pratt P, Yang GZ (2010) Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Proceedings of MICCAI, vol 6361, pp 275–282
Strong MS (1975) Laser excision of carcinoma of the larynx. Laryngoscope 85(8):1286–1289. doi:10.1288/00005537-197508000-00003
Suarez C, Rodrigo J (2013) Transoral microsurgery for treatment of laryngeal and pharyngeal cancers. Curr Oncol Rep 15(2):134–141. doi:10.1007/s11912-012-0286-0
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, 1998, pp 839–846. doi:10.1109/ICCV.1998.710815
Vaughan CW, Strong M, Jako GJ (1978) Laryngeal carcinoma: transoral treatment utilizing the co2 laser. Am J Surg 136(4):490–493. doi:10.1016/0002-9610(78)90267-2
Walsh JT, Flotte TJ, Anderson RR, Deutsch TF (1988) Pulsed co2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med 8(2):108–118. doi:10.1002/lsm.1900080204
Walsh JT, Flotte TJ, Deutsch TF (1989) Er:yag laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 9(4):314–326. doi:10.1002/lsm.1900090403
Xu C, Prince JL (1998) Generalized gradient vector flow external forces for active contours. Signal Process 71(2):131–139. doi:10.1016/S0165-1684(98)00140-6
Yamanaka N, Yamashita H, Masamune K, Liao H, Chiba T, Dohi T (2009) A coaxial laser endoscope with arbitrary spots in endoscopic view for fetal surgery. In: Proceedings of MICCAI 2009. Springer, pp 83–90
Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. doi:10.1109/34.888718
Acknowledgments
The research leading to the presented results has received funding from the European Union Seventh Framework Programme FP7/2007–2013 Challenge 2 Cognitive Systems, Interaction, Robotics under grant agreement \(\mu \)RALP - n\(^\mathrm {o}\) 288663.
Conflict of interest
All authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schoob, A., Kundrat, D., Kleingrothe, L. et al. Tissue surface information for intraoperative incision planning and focus adjustment in laser surgery. Int J CARS 10, 171–181 (2015). https://doi.org/10.1007/s11548-014-1077-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-014-1077-x